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5.1 Introduction

It is well known that the scattering properties of conducting ob-
jects at frequencies up through the first few scatterer resonances may
be effectively and accurately computed by numerically solving an inte-
gral equation for the induced surface current density via the method of
moments. At higher frequencies, however, the computational burden of
this approach can become excessive. For example, the surface area of a
three-dimensional object with some characteristic dimension of length
m in wavelengths—and hence the number of unknown currents in a
subdomain basis representation—is of order m?. The corresponding
moment matrix is of order m? x m?, and hence the memory stor-
age and time required to fill the matrix are of order m*. For large
matrices of order N x N, the time required to solve the associated
matrix equation is dominated by the approximately N3/3 multiplica-
tions required in the Gaussian elimination process; hence for a moment
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132 5. Comparison of Convergence Rates

matrix of order m? x m?, this implies a solution time of order m®.
The solution time increases still further if the moment matrix becomes
so large that most of the elements must be stored on a mass storage
device with a much slower access time. The additional time required
to fetch such elements can easily become the dominant factor in the
overall solution time. These considerations merely point to the fact
that a three-dimensional object of seemingly modest electrical dimen-
sions may in fact require enormous computer resources in time and
memory for the prediction of the object’s electromagnetic scattering
characteristics.

In order to retain many of the advantages of the integral equation
and moment method formulations while reducing the computer re-
sources required, a number of authors [1-5] have investigated the use
of the conjugate gradient method (CGM) as an alternative to Gaussian
elimination in the linear equation solving step of the solution process.
Since CGM is an iterative procedure, it can reduce the total solution
time if the process converges in only a few iterations. Even if a rela-
tively large number of iterations are required, the approach may also
save time by obviating the need for mass storage. Since in each iter-
ation step the matrix elements may be used as they are computed, it
is not necessary to store matrix elements out of core if it is feasible to
recompute them as needed during the course of the computation. In
many cases, it is faster to recompute needed elements than to access
them from a mass storage device.

Much of current research in the use of CGM is concerned with var-
ious approaches to pre-conditioning the moment matrix to accelerate
convergence of the method [6,7]. In this section we show that poor
conditioning of the matrix is often linked to the problem formulation,
however, and that significant improvement in the conditioning can be
obtained by utilizing an alternate formulation of the problem. We com-
pare, for example, the electric field (EFIE), magnetic field (MFIE), and
combined field (CFIE) integral equation formulations for scattering by
a two dimensional circular cylinder. We also apply the CGM to the
three-dimensional problems of a sphere and finite circular cylinder,
both excited by a voltage source. Since the CFIE is not easily applied
to antenna radiation problems, the so-called combined source integral
equation (CSIE) is used for these problems.

In the following section, the various integral equation formulations
and the uniqueness properties of their solutions are briefly reviewed.
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The conjugate gradient method is also summarized in Section 5.3, and
numerical results for the different formulations at a number of repre-

sentative frequencies and for the different geometries are presented in
Section 5.4.

5.2 Integral Equation Formulations

Electric field integral equations are frequently used because they
apply to both open and closed bodies. For open bodies, the equivalent
surface current found as a solution to the equation is actually the vector
sum of the currents on opposite sides of the surface. The EFIE follows
from enforcing the condition that the tangential electric field (sum of
the incident field E° and the scattered field E*) vanish on the body
surface §:

axE +axE =0, re$ (1)

where E’ is expressed in terms of the magnetic vector potential A
and the scalar electric potential $ as

E' = —jwA - V& (2)

For a two-dimensional cylinder in which the illumination is assumed
invariant along the cylinder axis, it is sufficient to enforce the boundary
condition at each point p on C, the cylinder cross section (Fig. 5.1):
For illumination perpendicular to and polarized transverse magnetic
(TM) to the cylinder axis, only z-components of electric field and
surface current are present, and expressing the scattered electric field
in (1) in terms of potential integrals yields

jmﬂuwmmwmamuxpec (3)

where J, is the unknown axial component of the surface current den-
sity on the cylinder. For the corresponding transverse electric (TE)

case, only the transverse component of electric field is present and (1)
becomes

Z'- k? / Je(P)-U'G(p,p')dl'+
¢ (4)
/ sz(P) ;

G(p#)it'} = Ei(p), p €C
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where 1
G(pyp) = - H (ko = p') (5)
and H((,z) is the Hankel function of the second kind and zero order.
For closed bodies, Eqs. (3) and (4) apply for excitations whose axi-
ally independent sources are located either interior or exterior to the
cylinder. But at frequencies for which the two-dimensional conducting
cavity with cross section C is resonant (or equivalently, at frequencies
for which the waveguide with cross section C is cutoff), the associated
cavity modal wall currents automatically satisfy the boundary condi-
tions implied by (3) or (4) with no excitation present. That is, at
such frequencies, a homogeneous solution of (3) or (4) exists, implying
that the corresponding moment matrix is singular and hence that a
unique solution to the scattering problem does not exist. In practice,
the moment matrices are usually only nearly singular, but the numer-
ically obtained surface currents are contaminated by the homogeneous
solution near such a resonant frequency [8). It is noted that the sin-
gular frequencies of (3) and (4) coincide with the waveguide cutoff
frequencies of the TM and TE waveguide modes, respectively, and for
a cylinder of arbitrary cross section are not generally known a priori.
The magnetic field integral equation [9] may be obtained by requir-
ing the total tangential magnetic field (the sum of the incident field
H' and the scattered field H?) to vanish just inside the surface the
conductor; that is we require

AxH +AxH =0, rt§ (6)

where ‘r T §° indicates that the observation point r approaches §
from the interior. The scattered magnetic field is, in turn, expressed
in terms of the magnetic vector potential as

E:%VxA )

For a cylinder under TM illumination, a careful analysis of the limit
results in the integral equation

—J’Ef)‘%/ T:(p)eos OH (k| p - p'|)dt' = Hi(p), p €C
C

(8)
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where ( )
p— P
lp — p'l ®)

cosf=n-

and under TE illumination to

% — Zk;/ Ji(p)) cosH'Hfz)(klp - p'|)dt = —Hi(l’)’ p eC
C

(10)
l_(P—PI)
lp — o'l (11)

The MFIE formulation also has homogeneous solutions (and hence
is singular) at certain specific frequencies. The boundary condition im-
plied by (6) permits us to identify these as the resonant frequencies of
a cavity with magnetic walls. Using electromagnetic duality [10] to
interchange the roles of electric and magnetic fields, however, we see
that (6) is mathematically equivalent to (1). The field quantities in
(1) and (6) implicitly satisfy the Helmholtz wave equation interior to
S and explicitly satisfy equivalent boundary conditions on S ; hence
the formulations represented by these equations have the same singular
frequencies [8]. In two-dimensions, however, the roles of the axial elec-
tric and magnetic fields are reversed by the duality argument, and the
singular frequencies of the TM form of the MFIE (8) are thus found to
be identical with the TE resonances of the conducting cylinder formed
by C'. Similarly, the singular frequencies of the TE form of the MFIE
(10) correspond to the TM cylinder resonances. Hence the singular
frequencies of (3) and (10) are identical, as are those of (4) and (8).

The above duality argument applies only to the boundary condi-
tions from which the MFIE is derived. In treating the sources in (8)
and (10) by the duality argument, one must also replace the unknown
electric current by its dual, a magnetic current. Thus, although the in-
tegral equations have the same singular frequencies, the homogeneous
solutions of (3) represent electric current sources which support the TM
cavity modes interior to C', while those of the dual to (10) represent
equivalent magnetic currents supporting these modes. Similarly, the
homogeneous solutions of (4) represent electric current sources which
support the TE cavity modes in C, while those of the dual to (8)
represent equivalent magnetic currents which support these modes.

By the above argument, (3) and (6) generally have different sin-
gular frequencies, and hence it is perhaps not surprising that a linear

where

cosf =n
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combination of the two integral equations can have a unique solution
at the singular frequencies of one of the original equations. Similarly,
a linear combination of (4) and (10) can have the same property. In
three-dimensions, however, the EFIE and the MFIE do not generally
decompose into different polarizations with different resonant frequen-
cies. Hence, it is at first surprising that, as proved by Mautz and Har-
rington [8], certain linear combinations of the two formulations have

no singular frequencies. That a linear combination of the two singular
" linear operators is non-singular is due to the fact that the homogenous
solutions of the two operators are different; one represents the elec-
tric currents which support the electric wall cavity modes, while the
other can be thought of as the dual of the equivalent magnetic currents
which support electric wall cavity modes. The resulting formulation
obtained by taking a linear combination of the two formulations is
called the combined field integral equation (CFIE) [8] and is written
in the following form:

—hx H'(r) = TEf,n(r) = & X H(e) + TEL,(), 715 (12)

in which « is a positive real number, generally taken to be unity. The
intrinsic impedance factor, 7, merely insures that the contributions
from each equation are given approximately equal weight when o is
set equal to unity. It is shown in [8] that this linear combination
eliminates the singularities in the operators that are present in both
the EFIE and MFIE formulations. Although not mentioned in [8], it is
easily shown that, in contrast to the MFIE, the CFIE can be used to
analyze both open and closed structures; unlike the EFIE, however, it
must be used to determine the currents flowing on both sides of an open
surface. Thus for open surfaces and for the same surface discretization,
the CFIE requires twice as many unknowns to be determined as does
the EFIE alone.

A significant disadvantage of the CFIE becomes apparent when
one attempts to excite a structure with a voltage source. In this case
the incident magnetic field is unknown and the CFIE is not useful. An
alternative formulation which retains the conditioning properties of the
CFIE while requiring knowledge of only the incident electric field was
noted by Mautz and Harrington [11]. This formulation, the combined
source integral equation (CSIE), introduces a magnetic current defined
in terms of the electric current sources as

M=ammxJ (13)
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in which a is again a positive constant, taken as unity in our com-
parisons. The new set of equivalent currents must be chosen such that
they produce the correct fields exterior to the body. However, the
introduction of the magnetic current also causes a jump in the tan-
gential surface electric field so that the fields interior to the body are
not zero as in the previous integral equations considered. Since the
electric current must support the discontinuity in the tangential mag-
netic field, which is no longer zero in the interior, the electric current is
not the physical electric current, but only an equivalent current. The
integral equation still follows from (1), but now the scattered electric
field is generated by the combined electric and magnetic sources and
is expressed in terms of potentials as

: E'=—ij—V<I>—%VxF (14)

where F is the electric vector potential [10] due to the dependent
magnetic current. Mautz and Harrington [11] show that the resulting
operator is identical to the transpose of the CFIE operator with the
basis and testing functions interchanged. In the examples, the CSIE
is applied to the three-dimensional problems of a sphere and finite
circular cylinder, and their convergence properties under the conjugate
gradient solution method are compared with those resulting from the
corresponding EFIE formulation.

5.3 Overview of the Conjugate Gradient Method

CGM is an iterative solution method in which a quadratic func-
tional is minimized along successive vectors in a manner similar to the
steepest descent method. In contrast to the steepest descent method,
however, the direction vectors are chosen to satisfy a so-called mutual
conjugate property, and, for an N X N linear system, the method
yields the exact solution in no more than N steps in the absence of
roundoff error. An adequate solution may often be obtained in fewer
than N steps. In poorly conditioned problems, however, the algorithm
may converge slowly or, due to accumulation of roundoff error, not at
all.

While Gaussian elimination requires approximately N3/3 multi-
plications for N large, an M -step CGM solution requires approxi-
mately 2M N? multiplications. Therefore, assuming the entire matrix
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can be stored in a computer’s random access memory, CGM is not
competitive with Gaussian elimination in terms of computation time
unless M is less than about N/6. If at least part of the matrix must
be stored in mass memory, however, CGM with matrix element regen-
eration may still be faster than Gaussian elimination. For illustrative
purposes the CGM algorithm given in [12] is listed below. The matrix
A* used below is the complex conjugate transpose of A.

To solve the system Ax = h, given an initial guess xo and nor-
malized residual tolerance ¢, the following procedure is performed.

o Compute the initial residual and direction vectors:

ro =h - Axy, po=A'r

Perform the iterative procedure:

Fori=0to N -1
A*r;||?
1. a; = An:
2. xi41 =X + a;p;

3. Piy1 =TI — a,-Ap,-

4. If the normalized residual ”ﬁﬁﬁﬂ < ¢, then exit

6. Piy1 = A*ripy + bip;

7. Next 7

It should be noted that the algorithm actually solves the system
A*Ax = A*h, which has the same solution as Ax = h but for which
the operator A*A is positive definite and Hermitian. Each step re-
quires only the computation of matrix and vector inner products in-
volving A or its complex conjugate transpose. Since the residual is
available at each step, it can be used to estimate a bound on the rela-
tive solution error as [13]

[|x — x4 [|A*ritq]|
<k 15)
]| ITAR] (
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where « is the condition number of A*A, the product of the norm of
A*A and that of its inverse using any valid norm. In the L, norm, <
is called the spectral condition number and is given by

K = Amaz (16)

Amin

where Apnge and A, are the maximum and minimum eigenvalues
of the positive definite Hermitian matrix A*A. The order of magni-
tude of the condition number may be taken as a rough measure of the
number of significant digits that may be lost in the solution during
the course of its computation, and hence it is near unity in a well-
conditioned system and is large in a poorly conditioned system. As
(15) shows, one cannot guarantee an accurate solution in the i-th it-
eration even if the norm of the residual is small unless the condition
number is reasonably small. If roundoff error is significant, the method
may converge slowly or not at all. We further note that if neither p;
nor r;y; is zero, but either Ap; or A*r;;; vanishes, then the itera-
tion procedure stagnates. These conditions can occur, of course, only
if A has homogeneous solutions, i.e., if A is singular.

5.4 Numerical Results

Since our interest in CGM is as an alternative to solving large
matrices associated with high frequency scattering, it is appropriate to
review our observations concerning the solution of scattering problems
at high frequencies:

o At frequencies near interior resonances of a closed scatterer, the
system matrix becomes ill-conditioned for both the EFIE and the
MFIE formulations. It is difficult to insure avoidance of these fre-
quencies since they cannot, in general, be determined a priori. Fur-
thermore, the deficiency is more serious at high frequencies since
the spectral density of the resonances increases with frequency.
Use of the CFIE or CSIE, on the other hand, eliminates this diffi-
culty.

o Near an interior resonant frequency, an eigenvalue of the EFIE or
MFIE system matrix approaches zero. Thus, by (16), the condition
number becomes large, and, in the presence of roundoff error, (15)
implies that convergence is difficult to achieve.
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Figure 5.1 Cross section of perfectly conducting cylinder.

The above statements suggest that use of the CFIE or CSIE not
only would eliminate the difficulties associated with non-uniqueness
of solutions of integral equations at high frequencies, but would also
enhance the convergence properties of the CGM since the small eigen-
values near interior resonant frequencies are eliminated. In this section,
examples are presented to illustrate this idea for at least the limited
class of problems considered here.

We investigate the problem of scattering by a circular cylinder
illuminated by TE and TM incident waves. Illustrated in Fig. 5.2 is
the spectral condition number associated with the moment matrices of
the EFIE, MFIE, and CFIE formulations for the TM polarization. For
this calculation, the cylinder was subdivided into 200 segments at all
frequencies considered. Similar information is presented in Fig. 5.3 for
the TE polarization. The cavity resonances are clearly evident in both
figures as singularities in the condition number. Note that in Fig. 5.2,
the peaks are observed in the EFIE solution at the resonant frequencies
of the TM circular waveguide modes while those of the MFIE solution
are seen to be at the resonant frequencies of the TE waveguide modes;
this correspondence is reversed for the TE polarization, as depicted in

Fig. 5.3. One easily verifies that these frequencies are indeed those for
which



5.4 Numerical Results 141

10

SPECTRAL COND. NO.
10 )

\
el O !

Ol

|

10

SPECTRAL CONDIYTION NUMBER VS. CYLINDER CIRCUMFERENCE
FOR TM INCIDENCE

|

iRy
Ay N

Figure

300 400 5.00 6.00 700 4.00 9.00 10.00
CIRCUMFERENCE ( WAVELENGTHS)

5.2 Spectral condition number vs. circumference for a circular

cylinder illuminated by a TM plane wave. Cylinder geometry approxi-
mated by 200 straight line segments.
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5.8 Spectral condition number vs. circumference for a circular

cylinder illuminated by a TE plane wave. Cylinder geometry approxi-
mated by 200 straight line segments.
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Figure 5.4 Normalized residual vs. normalized iteration number for TM
case at a resonant frequency (ka = 10.173). Computations performed
using 32 bit (7-8 significant figure) word lengths and 200 unknowns.

Jo(ka) = 0 (17)
for the TM modes and
Jn(ka) = 0 (18)

for the TE modes, where J,(z) and J/(z) are the Bessel function and
its first derivative, respectively. The figures also clearly illustrate the
increasing spectral density of the resonances with increasing frequency.
One observes that the EFIE formulation generally results in a more
poorly conditioned system of equations than the MFIE formulation.
The condition number of the CFIE, on the other hand, is practically
monotonic in frequency, and remains near unity at high frequencies.

The effects of cavity resonances on the CGM convergence rates of
the three formulations are illustrated by comparing these rates both at
resonant and non-resonant frequencies of the circular cylinder. A 200 x
200 matrix is solved in each case on a DEC MicroVAX II computer,
and round-off error effects and their dependence on conditioning are
deduced by solving the systems using both 32 (single precision) and 64
bit (double precision) word length computer arithmetic.
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Figure 5.5 Normalized residual vs. normalized iteration number for TM

case at a resonant frequency (ka = 10.173). Computations performed
using 64 bit (16-17 significant figure) word lengths and 200 unknowns.
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Figure 5.6 Normalized residual vs. normalized iteration number for TE
case at a resonant frequency (ka = 10.173). Computations performed
using 82 bit (7-8 significant figure) word lengths and 200 unknowns.



144 5. Comparison of Convergence Rates

Figure 5.4 illustrates the convergence rate of the normalized resid-
ual of the CGM algorithm for the TM polarization at the circular
cylinder resonant frequency ka = 10.173. This resonance is a conve-
nient choice because it is a resonant frequency for both the TE and
TM polarizations. The horizontal axis represents the iteration step
number normalized to the theoretical maximum number of steps, V.
Note that both the EFIE and MFIE residuals reach ‘plateaus’ in which,
for several iterations, no further reduction in the residual is achieved.
In fact, once the residual reaches a level of about 10~¢, the residual
actually increases slightly after each step due to the accumulation of
roundoff error.

To confirm the effect of roundoff error, the calculations were re-
peated in double precision with the results appearing in Fig. 5.5. The
early iterations yield approximately the same residual*, and also tend
to reach a plateau, as in Fig. 5.4, but the EFIE solution is able to
converge to a much smaller residual (note the different scales in the
figures). On the other hand, the convergence of the CFIE, whose con-
dition number is insensitive to resonant frequency, is much faster than
that of either the EFIE or the MFIE. The rate is also monotonic.
Because the associated matrix is well-conditioned, there is essentially
no change in the convergence rate when double precision is used. An
important observation is that convergence is achieved in significantly
fewer than N/6 steps, the approximate maximum number for which
CGM is faster than Gaussian elimination in core for large N and a
single right hand side.

These same effects are illustrated even more dramatically in Figs.
5.6 and 5.7, which show the corresponding results for the TE polar-
ization. In this case a plateau occurs when the residual reaches about
104 for both the EFIE and MFIE. The residual of the EFIE is not
reduced with further iterations in the single precision case (Fig. 5.6),
and is reduced further only after many steps in the double precision
case (Fig. 5.7). The CFIE, on the other hand, converges relatively
quickly and is essentially unaffected by the increase in precision. An
unexplained observation in Figs. 5.4-5.7 is the fact that even though
different formulations are used, the plateaus of the residuals appear to
have identical levels for the EFIE and MFIE cases; the levels of the
plateaus also change in going from single to double precision.

* Actually a small improvement in the convergence rate is obtained,
presumably due to the reduced effects of error accumulation.
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Figure 5.7 Normalized residual vs. normalized iteration number for TE
case at a resonant frequency (ka = 10.173). Computations performed
using 64 bit (16-17 significant figure) word lengths and 200 unknowns.

In Figure 5.8 the convergence rate of the normalized residual is
shown for the TE case at a frequency such that ka = 10.9. This
frequency is between internal resonant frequencies of the cylinder. The
associated computations were performed in single precision in Fig. 5.8
and in double precision in Fig. 5.9. Note that in this non-resonant
cylinder case, little improvement in the convergence rate results from
increasing the precision of the computation. Although both the EFIE
and MFIE exhibit considerable variation in rate of convergence, there
are no well-defined plateaus.

The above results and the fact that the conjugate gradient method
stagnates if either residuals or search vectors are homogeneous solu-
tions of the associated matrix equation leads us to conjecture that
such plateaus are associated with high- Q resonances; these are in
turn associated with small matrix eigenvalues and large condition num-
bers. We further conjecture that in structures with relatively low- Q
external resonances—such as the circular cylinder—use of the CFIE
effectively eliminates plateaus in the residual convergence curve. Fi-
nally, we suggest that it may not be possible to significantly improve
the convergence behavior of the CGM by using the CFIE for struc-
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Figure 5.8 Normalized residual vs. normalized iteration number for TE
incidence at a non-resonant frequency (ka = 10.9). Computations per-

formed using 32 bit (7-8 significant figure) word lengths and 200 un-
knowns.

tures which have high- ) external resonances such as wire- or strip-like
structures. This is because such structures have complex singular fre-
quencies which are near the real frequency axis, and hence the system
matrix must have at least one small eigenvalue near such frequencies.

These figures illustrate the interrelated nature of convergence rate,
operator conditioning and computation accuracy. The CFIE is well-
conditioned at both interior resonant and non-resonant frequencies;
consequently its convergence rate is high and is not significantly af-
fected by computational accuracy. The EFIE and MFIE are ill-
conditioned near the cylinder internal resonant frequencies but are rel-
atively well-conditioned otherwise; hence their convergence rates are
affected significantly by the precision of the computation only near
resonant frequencies.

Ill-conditioning can also be expected to affect the accuracy of the
solutions obtained. In Figs. 5.10 and 5.11 the relative error in the
TM and TE solutions, respectively, is shown for the circular cylinder
very near an internal resonance ( ka = 10.73). The quantity plotted
in both figures is the difference between the computed current and
the exact current normalized to twice the incident tangential compo-
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Figure 5.9 Normalized residual vs. normalized iteration number for TE
incidence at a non-resonant frequency (ka = 10.9). Computations per-
formed using 64 bit (1617 significant figure) word lengths and 200 un-
knowns.

nent of the magnetic field (2H: or 2H;). The computed currents
were generated by performing the CGM computations both in single
and double precision and terminating the computations when the nor-
malized residual was less than 1078 for single precision and 10~ for
double precision. (In Fig. 5.10 the TM polarized plane wave is incident
from ¢ = 0°, whereas in Fig. 5.11 the TE polarized plane wave is inci-
dent from ¢ = 180°.) It is seen that the CFIE solution is considerably
more accurate in both cases than the corresponding EFIE and MFIE
solutions. It is also observed that the error in the EFIE and MFIE
solution oscillates at a rate corresponding to the value of m for the
interior mode with spatial variation exp(Xjm¢) which is resonant at
the solution frequency.

In Figs. 5.4-5.7 it is seen that the CFIE residual appears to exhibit
exponential convergence with respect to the number of iteration steps.
Furthermore, it is found that the number of steps required to achieve
a normalized residual below a given level is but a slowly increasing
function of the number of unknowns. This is illustrated in Figs. 5.12
and 5.13 for the TM and TE cases, respectively, by plotting the CGM
convergence curves of the CFIE solution for a series of increasing fre-
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Figure 5.10 Relative error in the current distributions for TM case at a
resonant frequency (ka = 10.173). Computations performed using double
precision and 200 unknowns. Excitation fleld incident at 0°.

quencies as the number of unknowns is correspondingly increased. The
four curves in each figure represent the normalized residual vs. number
of iteration steps for circular cylinders 10, 20, 40 and 80 wavelengths
in circumference using a discretization involving 100, 200, 400 and 800
unknowns, respectively. As the figures illustrate for both polarizations,
not only is the convergence rate high for all the frequencies considered,
but it is also remarkably insensitive to the electrical size of the scat-
terer.

The circular cylinder provides a good starting point for our com-
parisons; however, its high degree of symmetry can sometimes provide
deceptive results. To address this possibility, elliptic cylinders of var-
ious aspect ratios were solved using the CFIE. Figures 5.14 and 5.15
show that though the convergence properties do not depend strongly
on the shape of the body for either TM or TE incident fields, they
do tend to confirm our conjecture that the increased Q of exterior
resonances for thinner objects would decrease the convergence rate of

the CGM.

Of significant interest are the three-dimensional formulations, for
which only the EFIE and CSIE are considered here. We examine a



5.4 Numeri

Figure 5.11

cal Results 149

t,'-
EFIE
—-——-— WFIE
© - — —— CFIE
i
2
i 3
~ — o
)
1=
k]
2 b4
3 2
:i <o
~
o
i
T T T
SN NN A LA
0. 00 30.00 60. 150.00  180.00

00 90.00 120.00
ANGLE OF OBSERVATION (DEGREES)

Relative error in the current distributions for TE case at a

resonant frequency (ka = 10.173). Computations performed using double
precision and 200 unknowns. Excitation fleld incident at 180°.

10°

10"

- 10 WAVELENGTHS
20 WAVELENGTHS
- 40 WAVELENGTHS
- BO WAVELENGTHS

+p0O3

NORMAL | ZED RESIDUAL
10° 107 10° 10° 107

10"

0.00 5.00 10.00 |'E.Poo 20.00 25.00 30.00
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Ziare 5.16 Triangular patch model for a sphere of diameter A/2. Model

uses 144 unknown edge currents.
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sphere and a finite circular cylinder with a diameter to length ratio
of 5 to 1. The excitation in both cases consists of a uniform voltage
discontinuity distributed along a delta-gap about the sphere’s equator
or the cylinder’s circumference and centered along its length. Figures
5.16 and 5.17 show the triangular patch models used to represent the
sphere at the two frequencies considered. Figures 5.18 and 5.19 show
the cylinder models. Sufficient unknowns are used such that the longest
edge is about A/6 in length. Figs. 5.20 and 5.21 illustrate that the far
fields of the EFIE and CSIE solutions for the discrete sphere models are
in good agreement with the analytically derived results for a smooth
sphere at each frequency. Figs. 5.22 and 5.23 illustrate the convergence
rates of the residuals for the CGM solutions of the sphere and cylinder
problems, respectively. Convergence rates are rapid for the CSIE and,
as with the CFIE, the total number of steps to achieve a given residual
error appears to be only weakly dependent on the frequency and the
number of unknowns. Actually, for the cases considered, the number of
steps for the EFIE—though greater than for the CFIE—also exhibits
only this same weak dependence. It is not expected that this result
would hold at higher frequencies, however, where the denseness of the
internal resonances would strongly affect the conditioning of the EFIE.
Also note that for these antenna problems, for which the spatially con-
centrated excitation should strongly excite more eigenfunctions of the
operator than the corresponding scattering problem, rapid convergence
of the CGM solution of the CFIE is still obtained.

5.5 Summary and Discussion

The electric, magnetic, and combined field integral equations are
compared with respect to their influence on the convergence rate of the
conjugate gradient method. Circular and elliptic cylinders under TE
and TM illumination were used as test objects because the exterior
resonances are of relatively low Q. Additionally, the circular cylin-
der solutions can be easily found analytically and compared with the
numerical solutions.

To investigate three-dimensional problems the combined source
integral equation is compared with the electric field integral equations
with respect to convergence rate. A sphere, for which analytical results
are available for comparison, and a cylinder of 5 to 1 aspect ratio were
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Figure 5.17 Triangular patch model for a sphere of diameter \. Model
uses 540 unknown edge currents.

Figure 5.18 Triangular patch model for a cylinder of diameter A\/4 and
length 2.56A. Model has 198 unknown edge currents.
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Figure 5.19 Triangular patch model for a cylinder of diameter \/2 and
length 5A. Model has 792 unknown edge currents.
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Figure 5.20 Far field pattern of sphere of \/2 diameter excited by a
uniform voltage at the equator. Patterns represent |Ej| of the analytic
(solid line), EFIE (dashed line) and CSIE (dotted line) solutions.
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Figure 5.21 Far field pattern of sphere of A diameter excited by a uniform
voltage at the equator. Patterns represent | Ep| of the analytic (solid line),
EFIE (dashed line) and CSIE (dotted line) solutions.

used as test cases.

The most significant difficulty with the EFIE and MFIE scattering
formulations at the higher frequencies—their poor conditioning at or
near internal body resonances—also appears to be the principal cause
of poor convergence of the CGM. It appears that both these difficulties
may be overcome by using the CFIE or CSIE formulation. Under
these formulations, the convergence rate of the CGM is found to be
approximately exponential and, at least in the two-dimensional cases
tested, only mildly dependent on the electrical size of the scatterer.

For structures which have high- Q exterior resonances (such as
wire objects or cylinders of long and electrically narrow eross sections
illuminated in the TE polarization), the fact that the asgociated inte-
gral equations must have homogeneous solutions at complex frequen-
cies near the real frequency axis implies that the operators have small
eigenvalues at nearby (real) frequencies. This in turn suggests that the
operators are inherently ill-conditioned near such frequencies and that
slower convergence of the CGM in the vicinity of such frequencies is to
be expected.
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Figure 5.22 Normalized residuals of the sphere problem using the EFIE
and CSIE.
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Figure 5.23 Normalized residuals of the cylinder problem using the EFIE
and CSIE.
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