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15.1 Introduction

Conventional transformation methods, such as QR technique, for
the eigen-problem of a symmetric matrix are quite popular. However,
there has been an increasing interest in iterative algorithms due to the
following two reasons.
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First of all, unlike conventional methods which usually find all
the eigenvalues and the eigenvectors simultaneously, iterative methods
seek only the desired eigenvalues and eigenvectors. Hence, they should
be more efficient. Moreover, the computational complexity of iterative
algorithms depends largely on how easily the matrix-vector product
Az can be computed. Therefore, iterative methods could be even more
efficient when A is sparse or when A has a certain special structure
(like Hankel or Toplitz) for which FFT can be used to speed up the
computation of Az . Examples of the second case can be found in [1-3]

where FFT has been used along with the conjugate gradient to solve
Hankel systems.

Secondly, iterative methods can easily fit in the frame work of
adaptive signal processing. Algorithms based on iterative methods were
proposed in [4-9] to adaptively find the eigenvector corresponding to
the minimum eigenvalue of a sample covariance matrix, while the co-
variance matrix is being continually updated.

In 10}, it has been shown that the conjugate gradient method can
be utilized in an efficient fashion for adaptively finding the eigenvector
corresponding to the minimum eigenvalue. However, in this chapter, we
present the conjugate gradient algorithm for the minimum/maximum
eigen-problem of a fixed symmetric matrix. For convenience, only the
minimum eigen-problem is mentioned throughout this chapter, unless
it is necessary to distinguish it from the maximum eigen-problem, since
the algorithms we shall discuss work equally well for both problems.

The chapter is organized as follows. In section 15.2 the essential ba-
sic concepts are outlined including the properties of the Rayleigh quo-
tient, iterative algorithms for functional optimization, and their con-
nections to the minimum eigen-problem. The conjugate gradient and
steepest descent algorithms are presented and compared in section 15.3.
The comparison of the two algorithms favors the conjugate gradient.
Possible applications of the conjugate gradient algorithm are given in
section 15.4. Finally, conclusive remarks are given in section 15.5.

15.2 Preliminaries

a. Rayleigh Quotient and its Properties

We shall consider a real symmetric matrix A of order n whose



15.2 Preliminaries 569

eigenvalues and eigenvectors will be denoted by A; and z; so that

Az; = \z;, i=12,...,n, (1)
with
M <A< .. € Ay (2)
a.!ld . .
@ ={y i3] 3)

where (, ) is the ordinary scalar product of vectors.

The Rayleigh quotient @(z) associated with the matrix A4 is a
finite-dimensional nonquadratic functional which assigns to any non-
zero real vector z a scalar quantity given by

Q(z) = (2, Az)/(=,z)
=2TAz[2Tz (4)

where T denotes the transpose. Here both A and z are considered
to be real.

The Rayleigh quotient has the following properties:

1) Homogeneity.

@(z) is homogeneous of degree one, i.e.,

o(kz) = 0(2) (5)

for any constant k # 0.
2) Minimal Residual.
Given z # 0, @(z) yields minimal residual, i.e.,

(A - uDz|lz > | 4=z - @*(2)ll=Il2 (6)
where ||.||2 is the 2-norm of a vector in R™ defined as
lzll2 = (2,2)!/? (7)

I is an identity matrix, and the equality holds only when u = @(z).
3) Boundedness.
The values of the Rayleigh quotient are in the real interval bounded
by the extreme eigenvalues [A1,A,], i.e.

Al < @(z) < Aﬂ (8)
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Also, @(z) is equal to A; or A, when z is in the space spanned by
z, or z,.

4) Stationarity.

The gradient go(z) of @(z) is given by

9o(z) = 2% [Az — O(z)z]/(=, ) (9)

The Hessian of the Rayleigh quotient is
Ho = 2% (A - goz™ — 295 — @I)/(2,2) (10)

From the definitions of gradient and Hessian of @(z), it is seen
that the eigenvectors of A correspond to the stationary points of @(z)
where the gradient is zero, and the eigenvalues of A are the values of
@ at the corresponding stationary points. Moreover, the minimum
eigenvector z; is the only local and global minimum of @(z) which
offers a stable stationary point (semi-positive Hessian) with respect to
the descent search in the method to be discussed.

In the above discussion, the algebraic multiplicity of unity of the
extreme eigenvalues has been assumed. When the minimum eigenvalue
has multiplicity » < n, i.e.,

A=A =-e= A, (11)
then, @(z) will assume its minimum when z is in the space of
span{z1,Z3,...,2,} (12)

The close relation between the eigen-data of A and the station-
ary points of its Rayleigh quotient enable us to obtain the minimum
eigenvalue of A by minimizing the Rayleigh quotient of A.

b. Descent Methods in Functional Minimization

Most iterative methods for finding the minimum of a functional
f(z) defined on R™ take the form

z(k + 1) = z(k) + a(k)d(k) (13)

where d(k) is called the “search direction,” and a(k) is called the
“step length” which is chosen to minimize, or at least reduce, f(z)
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along the line that passes through z(k) in the direction of d(k). Thus
there are two distinct problems in such an iterative method: the choice
of d(k), and the determination of a(k).

An iterative method is called a descent method if it generates a
sequence of scalars {f[z(k)]} which is descending, i.e.,

flz(k +1)] < fl=z(k)] (14)

Since the sequence is bounded from below by f(z,,), where z,, is
the global minimum of f(z), it seems likely that the sequence {z(k)}
will converge to at least a local minimum of f(z). That is why so
much attention has been drawn to the study of descent methods in the
functional minimization.

Corresponding to the choices of the search directions, there are var-
ious iterative methods among which the most well known ones are the
steepest descent (SD), Newton descent (ND), variable metric (VM),
and conjugate gradient (as a special version of more generalized con-
jugate direction) methods [11].

In the steepest descent (SD) algorithm, the negative of the gradient
glz(k)] of f at z(k) is taken as search direction d(k).

In the Newton’s descent (ND) algorithm, the functional f is ap-
proximated by the three-term Taylor series

f(z) = flz(k)] + [2 — 2(k))Tg(k) + (1/2)[z — (k)" H(k)[z — (k)]
= fa(2) (15)

From z(k) we move to z(k+ 1) to minimize the quadratic functional
fq(z) . The minimum occurs when

g(k) + H(k)[z(k+1) — z(k)] =0 (16)

or

2(k +1) = z(k) — H(k) g(k) (17)

Since f is not purely quadratic, greater amount of descent at each
iteration may be obtained by performing the optimal line search rather
than just using (17), i.e.,

z(k +1) = z(k) — a(k)H (k)™ g(k) (18)

This is achieved through the scalar factor a(k).
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In the variable metric (VM) algorithm, the search direction is
formed by

d(k) = -G(k)g(k) (19)

where G(k) is an n X n positive definite matrix approximating the
inverse of the Hessian at z(k). The search directions are guaranteed to
be descending. G(k) is updated in such a way that the search direction
d(k) is more and more like that in the ND algorithm as z(k) gets
closer and closer to the minimum. The most successful variable metric
algorithm is credited to Davidon [12] and Fletcher and Powell [13].

In the conjugate gradient (CG) algorithm, the search direction is
a linear combination of the gradient and the previous search direction,
i.e.

p(k) = (k) + B(k - 1)p(k — 1) (20)
r(k) = —g(k) (21)

The advantages and disadvantages of descent methods mentioned
above are as follows:

1) The steepest descent uses values of the functional to be mini-
mized and its gradient. It often exhibits very slow convergence;

2) The conjugate gradient uses values of the functional, its gradi-
ent, and the second derivative. It gives the exact solution in n steps for
an n-dimensional quadratic functional, and is faster than the steepest
descent;

3) The Newton descent uses values of the functional, its gradient,
and the inverse of the matrix of second derivative. It has very rapid
convergence when it converges! However, the convergence is highly de-
pendent on the initial guess;

4) The variable metric descent requires the computation and stor-
age of the step direction matrices G(k) in addition to those required
by the conjugate gradient. It gives the exact solution in n steps for an
n -dimensional quadratic functional due to its connection to the con-
jugate gradient, and offers higher asymptotic rate of convergence than
the conjugate gradient due to its connection to the Newton descent.
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15.3 Steepest Descent and Conjugate Gradient
Methods for the Minimum Eigen-Problem

Among the descent methods which minimize the Rayleigh quo-
tient, the Newton descent and quasi-Newton descent are not suitable
since the former requires and the latter attempts to approximate the
Hessian of @(z) at the minimum which is a singular matrix [14]. In
what follows, we describe the methods of steepest descent and conju-
gate gradient for the minimum eigen-problem.

Both the steepest descent and conjugate gradient algorithms start
with an initial guess z(0) for the minimum eigenvector and update it
as

2(k + 1) = 2(k) + a(k)p(k) (22)
In (22), a(k) is obtained by optimal line search, that is, by minimizing
the functional @(z) along the direction p(k) passing through the point
z(k).
It can be shown that a(k) is always real and given by

a(k)=-B + vVB? —4CD/(2D) (23)
where
D = py(k)pc(k) — pa(k)pa(k) (24)
B = py(k) — A(k)pa(k) (25)
C = pa(k) — A(k)pc(k) (26)
Pa = (p(k), Az(k))/(z(k),2(k)) (27)
Py = (p(k), Ap(k))/(=(k),z(k)) (28)
pe = (p(k),z(k))/(=(k), z(k)) (29)
pa = (p(k),p(k))/(=(k),z(k)) (30)

A(k) = 0[z(k)] = (z(k), Az(k))/(z(k),z(k)) (31)
At z(k+1), a new search direction needs to be selected. The basic
difference between the method of steepest descent and the method of
conjugate gradient is how the new search direction p(k+1) is selected.
a. Method of Steepest Descent
For this case, the search directions are chosen as the residual, i.e.
p(k+1)=r(k+1)
=[Ak+1)z(k+1) — Az(k + 1)]/(=z(k + 1),z(k + 1)X32)



574 15. Survey of Conjugate Gradient Algorithms

With this particular choice of p(k + 1), certain simplifications can be
made in (27)-(30). For example,

Pa(k) = —pa(k) = —(r(k),r(k))/(z(k),z(k)) (33)
po(k) = (Ar(k),r(k))/(z(k),z(k)) (34)
(k) =0 (35)

Therefore,
a(k) = ~[ps(k) ~ A(k)pa(k)]+
+4/[ps(k) = ME)Pa(R)P? + 483(R)/[295(K)] (36

b. Method of Conjugate Gradient

For the conjugate gradient method, the new search direction are
selected as

p(k+1) = r(k + 1)+ B(k)p(k) (36)
where B(—1) = 0, and B(k), k = 0,1,..., is such that p(k +1) is

conjugate to p(k) with respect to some weighting matrix H , i.e., p(k)
is H -orthogonal

(p(k + 1), Hp(k)) = 0 (37)
We shall discuss the choice of H in subsection 15.3.d.
The equations (36), (37) along with (22)—(31) constitute the conju-

gate gradient algorithm for the minimum eigenproblem of a symmetric
matrix.

c. Comparison of SD and CG Algorithms

The rates of convergence of the SD and CG algorithms have been
studied by many researchers. For example, it is shown in the book by
Axelsson and Barker [16] that when the SD and CG algorithms are
applied to minimize a quadratic functional, their rates of convergence
are respectively

|2(k) = 2m|a < [(AL — As)/(AL+ As)¥|2(0) — zm|a  (38)

and

|2(k) = Zm|a < Ta[(AL + As)/(AL = As)] 7 2(0) —2mla  (39)
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where Ay and ), are the largest and smallest eigenvalues of the matrix
A, T is the Chebyshev polynomial of degree k, and |- |4 denotes
the vector norm with respect to the positive definite matrix A defined
as

2|4 = (2, Az)!/? (40)

Further if p(e) is defined for any ¢ > 0 to be the smallest integer k
such that

|2(k) — 2m|a < €|2(0) — 2|4, z(0)eR™ (41)
then, from (38) and (39), bounds are found for psp(e) and pcg(e) as
psp(e) < (1/2)x(A)In(1/e) + 1 (42)

and
pcac(e) < (1/2)y/k(A)In(1/€) + 1 (43)

where x(A) is the spectral condition number of 4,and In() represents
natural logarithm. It is seen that when x(A) is large the bound for
pcg(€) is much smaller than that for psp(e). For example, if x(A) =
10* and ¢ = 10~*, then pcg < 496, whereas psp < 46052.

It is important to notice that (39) and (43) are derived without
assuming anything about the eigenvalue distribution of 4. Depending
on the eigenvalue distribution, they may be quite pessimistic. Several
examples are given in [16] to demonstrate the above point and lead to
the well known fact that the “clustering” of eigenvalues tends to in-
crease the rate of convergence of the CG algorithm. For a nonquadratic
functional, convergence behavior similar to (38) and (39) should be
expected in the latter stages of the minimization since the functional
is typically near quadratic in the immediate vicinity of a minimum.
Therefore, as far as the rate of convergence is concerned, the conjugate
gradient algorithm is generally much better than the steepest descent
algorithm.

Since near the minimum the Hessian of the Rayleigh quotient is
nonnegative definite instead of positive definite, what we have dis-
cussed doesn’t seem applicable. However, it is shown [14] that similar
convergence behavior exists when the SD and CG algorithm are applied
to a quadratic functional whose Hessian is nonnegative.

Intuitively, convergence of the CG algorithm is faster than the SD
algorithm because the trial eigenvector is updated by a vector chosen
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from a larger space of vectors in the CG algorithm than the correspond-
ing space in the SD algorithm. Moreover, the CG algorithm tends to
converge in less than n iterations once the trial eigenvector is in the
region close to the minimum eigenvector.

d. Comparison of Various Versions of the CG Algorithm

Equation (37) is the most fundamental relation of the conjugate
gradient method. The choice of the weighting matrix H in (37) renders
various algorithms. For example, in [10], Chen et al. utilized the matrix
A for H . This results in

B(k) = —(r(k + 1); Ap(k))/(p(k); Ap(k)) (44)
Townsend and Johnson (23] suggested the use of H defined by
r(k+1) = r(k) + H(k)[z(k) - 2(k +1)] (45)

which leads to
B(k) = =(r(k + 1);r(k) — r(k + 1))/ (p(k);r(k) — r(k + 1))  (46)
A better known formula for B(k) is

B(k) = (r(k +1);r(k + 1))/(r(k); r(k)) (47)

which was developed by Fletcher and Reeves [24]. They were among
the first to apply a conjugate gradient algorithm to the minimization
of a nonquadratic functional.

When the conjugate gradient method is applied to minimize a
quadratic functional of the form

(1/2)2T Az — 2Tb + constant (48)

the conjugacy is made among search directions with respect to the
matrix A, which is the Hessian of the functional. Here T denotes
the transpose of the matrix. In the case of minimizing the Rayleigh
quotient, which is a nonquadratic functional, we are inclined to think
that the most natural choice of H is the Hessian matrix of @(z). This
is because near the minimum point z; of @(z), @(z) behaves like a
quadratic functional, i.e.,

(z) ~ @(z1) + (1/2)(z — 21)" H(z1)(z — 21) (49)
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Generally, there are two factors that make the conjugacy with
respect to Hessians less desirable. One factor is that the Hessian of
a nonquadratic functional is not always easily available. The other is
the extra computation and storage required to evaluate the Hessian.
However, these problems do not appear for the case of extreme eigen-
problems.

For the Rayleigh quotient, the Hessian is given by (10). This par-
ticular choice of the Hessian of @(z) at 241, denoted by H(k+ 1),
for the H in (37) yields

B(k) = —(r(k + 1); H(k + 1)p(k))/(p(k); H(k + 1)p(k)) (50)
This results in

A(k) = ~[(r(k + 1); Ap(k)) + (r(k + 1); r(k + 1))(=z(k + 1); p(k))]
[(p(k); Ap(k)) — Ak + 1)(p(k); p(K))] (51)

The above result is arrived at by utilizing

(r(k+1);p(k)) =0 (52)

which is the consequence of the optimal line search used to obtain a(k)
in (22). It is seen from (51) that there is no need to compute and store
H(k+1) at all!

Besides the choice of A(k), another issue of concern is the effect of
normalization. The normalization was adopted in [10], partially to pre-
vent numerical unstability and overflow caused by possible extremely
large magnitudes of the trial eigenvector. Specifically, an additional
step following the optimal line search is used to ensure the unity mag-
nitude of the trial eigenvector in each iteration, i.e., (22) is replaced
by

z'(k +1) = z(k) + a(k)p(k) (53)

and
2(k +1) = 2'(k + 1)/|2'(k + 1)| (54)

In summary, various versions of the CG algorithm include:

Algorithms CA and CN: both use (44) for B(k), with and without
the normalization, respectively.

Algorithms TJ and TN: both use (46) for 8(k), with and without
the normalization, respectively.
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Algorithms FR and FN: both use (47) for 8(k), with and without
the normalization, respectively.

Algorithms HE and HN: both use (51) for 8(k), with and without
the normalization, respectively.

Several numerical examples are given for the comparison among
various versions of the CG-algorithm [15]. The computer programs are
implemented in single precision.

As a first example, we consider the same problem as described in
[10], where matrix A is the sixteenth order covariance matrix of a
typical speech signal written as

To T1 T1s
1 To -°* Ti4

A= . 7 . . (55)
Ti5 Ti4 °** To

where the various autocorrelation coefficients are listed below:

ro = 1.00000000, r1 = 0.91189350,

r2 = 0.75982820, r3 = 0.59792770,

rq = 0.41953610, rs = 0.27267350,

re = 0.13446390, r7 = 0.00821722,

rg = —0.09794101, rg = —0.21197350,
r10 = —0.30446960, r11 = —0.34471370,
r12 = —0.34736840, r13 = —0.32881280,
r14 = —0.29269750, r15 = —0.24512650 (56)

The minimum eigenvalue is
Amin = 0.0032584817 (57)

which is obtained using the QR algorithm for the eigen-problem of a
symmetric matrix in double precision. The specific algorithm utilized
was EIGRS, which is available in the IMSL library.

We apply the eight versions of CG-algorithm, and compare the
number of iterations and the cpu time taken for convergence starting
with different initial values of the trial eigenvector. For the purpose
of comparison, we list results of all versions of CG-algorithm in Table
15.1. The symbol N denotes the number of iterations, and T denotes
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Zo random vector (—l,l,—l,...)T (1,0,0,...,0)T
Alg. N T Al N T Al N T Al
HE 66 |15 | o0.0032588 |24 4 | 0.0032585 77 |16 | o.0082586
HN 82 |17 | o.0082686 |24 6 | 0.0082585 96 |21 | o.0082586
TJ 68 |16 0.0032588 | 26 5 0.0082585 65 {14 | 0.0032586
TN 77 |18 | o0.0082888 |26 5 | 0.0082886 65 |[15 | o.0082586
FR 81 |17 | o.0082586 |18 4 | 0.0082585 88 |18 | o.0082586
FN 84 119 | o.00s3587 |17 4 | 0.0032586 87 |19 | o.0082585
CA [119 {26 | o.0082588 |32 T | o.cosasss | 124 |25 | o.0082586
CN [124 |26 | o.0082587 |32 7 | o.0082586 | 132 [30 | o.0032585

Table 15.1 Stimulation results of varous CG-algorithms for the first
example.

the total cpu time taken to obtain the minimum eigenvalue A; (to an
accuracy of 10~*) shown in the table.

It is observed from Table 15.1 that all versions of CG-algorithm
converge to the minimum eigenvalue with an accuracy of 4 decimal dig-
its regardless of the different trial eigenvectors they start with. The ini-
tial value (-1,1,~1,1,...,)7 produces the fastest convergence among
the three different initial values in this example. The performance of
the algorithms HE, HN, TJ, TN, FR, and FN is evidently better than
that of algorithms CA, and CN. There is little difference in perfor-
mance between algorithms in which the trial eigenvector is normalized
in each iteration and those without the normalization.

As a second example we choose a 50 x 21 Hankel matrix

31 a -+ an
a2 az -+ a2

A=l . (58)
G50 Gs1 - a70

which is obtained from sampling the sum of 10 sinusoidal signals with
random phases plus white Gaussian noise of zero mean, i.e.,

s(t) = ) _ sin[27(0.08 + 0.4k)t + 2xran(k)] + w(t) (59)
k=1

where ran(k)’s are random samples of a random variable uniformly
distributed between —1 and 1, and w(t) is the Gaussian noise.

To determine the sinusoids from the data samples a;, it is nec-
essary in Pisarenko’s method to obtain the minimum eigenvector of
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)

Zo random vector (-1,
Ag [N [T N [N [T N [N [T W
HE | 39 |11 [0.205751 19 6 [0.205754 | 36 |14 |0.205749
HN | 39 |13 |0.205749 19 7 10.205753 | 33 |12 ]0.205750
6
6
7

,=1,..)7 (1,0,0,...,0)7

TI | 22 7 [0.205751 | 20 0.205754 | 21 7 10.205750
TN | 21 8 |0.2057561 | 20 0.205749 | 21 7 |0.205750
FR | 21 6 |0.205748 | 22 0.205753 | 20 5 [0.205750
FN | 22 7 (0.205747 | 62 |20 [0.205751 | 21 7 10.205752
CA | 49 |16 [0.205747 | 20 7 10.205750 | 49 |17 |0.205753
CN | 49 15 |0.205747 | 20 7 [0.205754 | 49 |16 [0.205749

Table 15.2 Comparison of various CG-algorithms for the second example.

AT A. Once again, we apply the eight versions of the CG-algorithm,
and compare the number of iterations and the cpu time taken by each
of them to converge for different initial values for the trial eigenvector.
The results listed in Table 15.2 are similar to the observations of Table
15.1.

As a third example, we apply CG-algorithms to a symmetric ma-
trix of order 40 created by performing a similarity transformation on
a diagonal matrix, i.e.,

A=QTDQ (60)
where D is the matrix of eigenvalues given by
D = diag(A1,A2,...,A40) (61)
and @ is an orthogonal matrix generated by
Q = I —2vvT /(vTv) (62)

with I being an identity matrix, and v being a random vector.

By specifying the matrix D in different ways, one gets some insight
into the performance of the CG-algorithms. Specifically, four sets of
eigenvalues are specified to test CG-algorithms for cases of multiple,
negative minimum eigenvalues, and clustering eigenvalues. They are:

1) (-1.5,-1.5,-1.5,4,5,...,40);

2) (-1.5,-1.5,—1.5,4,4,...,4);

3) (-1.5,-1.5,-1.48,4,5,...,40);

4) (1.5,1.5,1.52,4,5,...,40).

The numerical results corresponding to the random initial trial
eigenvector are in Table 15.3 in which the obtained minimum eigen-
value and the required number of iterations are recorded. It is seen
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D ©) @) ©) @
Alg. N /\1 /\1 N Al N Al
HE | 15 ({-1.50000 -1.50000 | 35 |-1.50000 | 44 |1.50000
HN ([ 15 |-1.50000 -1.50000 | 26 |(-1.49967 | 45 |1.50000
TI | 14 |-1.50000 -1.50000 | 25 |-1.49998 | 33 |1.50010
TN | 156 {-1.50000 -1.50000 | 25 }-1.49998 | 32 |1.50011
FR | 14 |-1.50000 -1.50000 | 25 [-1.49994 | 32 |1.50002
FN ([ 14 [-1.50000 -1.50000 | 34 |-1.49999 | 45 |1.50000
CA | 50 |-1.50000 -1.50000 | 66 |-1.48697 | 161 |1.50005
CN | 50 [-1.50000 -1.50000 | 62 |-1.48696 | 161 |1.50005

Table 15.3 Simulation results of various CG-algorithms for the third
example.

2

bk ok fasd Gk ek ek fed ek

that the CG-algorithms still converge for the multiple and/or negative
minimum eigenvalue. The rate of convergence of the CG algorithm for
the minimum eigen-problem is dependent on the eigenvalue distribu-
tion of Hg(z1). In particular, the “clustering” of nonzero eigenvalues
of Hp(z1) results in fast convergence as evident from the results for
the second set of eigenvalues. It is apparent that the observations made
in previous examples are still true in this example.

We conclude from those numerical examples that the performance
of algorithms HE, HN, TJ, TN, FR, and FN is generally better than
that of algorithms CA, and CN. Since H(k) in (45) appears to be
an approximation of H(k), and (46) and (47) are equivalent near the
minimum where the orthogonality of the residulas (k + 1) and r(k)
are approximately true, it seems that as far as the rate of convergence
is concerned, the matrix A should be replaced by the Hessian-like
matrices for generating mutual conjugate directions. The comparison
among the algorithms utilizing (46), (47), and (48) for A(k) shows
that the difference in performance is not significant. Also, it is shown
that the normalization of z, in each iteration seems to have very little
effect on the rate of convergence.

15.4 Applications of the CG Algorithm for Extreme
Eigen-Problem

The applications of the CG algorithm are mainly for efficiency in
computational effort and flexibility in real time implementation. In this
section, we give some examples.
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a. Computation of the Prolate Spheroidal Functions [17]

The computation of the prolate spheroidal functions demonstrates
the efficiency of the CG algorithm. The prolate spheroidal functions
are the eigenfunctions of the following integral equation [18]

1
/_ () sialc(t - 2))/[x(t - £)] d= = A (1 (63)

where ¢ is a parameter, A is the eigenvalue and the eigenfunction
@(z) is the prolate spheroidal function.
It is shown that the operator

1
AX(t) = /_ X (v)sin[c(t — v)]/[x(t - v)] dv (64)

is self-adjoint and positive definite. Therefore, according to Daniel {19]
we can use the conjugate gradient algorithm for the computation of
the prolate spheroidal functions. For computational purpose, (63) can
be written as

N
A @ (cyt) = ) wysinfe(t — &)]/[x(t - t:)] @ (c, ) (65)

=1

In (65), the integral has been replaced by a summation. This can
be achieved numerically by the N point Gauss-Legendre quadrature
formula [20] which has the least truncation error for a given number of
samples of the function among all numerical integration routines. The
Gauss-Legendre quadrature is given by

1 N
[ fe)de xS wise (66)

=1

where w;’s are the weights, and z;’s are the abscissa points at which
the function f(z;) is evaluated.
By defining the eigenvector z as

z= (zhzh'“,zN)T (67)

with
2= VB0 (k)  i=12...,N (68)
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n ¢c=0.5 c=1.0 c=2.0 c=4.0
L plm L p(m L plm L
013.0989557 | 1| 25.7258178 1| 3[8.8055992| 1| 3 |9.9588544
118.5810737 3| 3|6.2791273 | 2| 4 (3.5205866 1| 4|9.1210736
2[3.9174534 | 5| 2|1.2374793| 3| 2 [3.5867687|2| 3|5.1905483

Table 15.4 Eigenvalues of prolate spheroidal equation obtained by CG-
algorithm (A, = L x 10-7.)

el Y k-]
@ a3

the operator equation of (63) is transformed into a matrix equation
Az = Xz (69)
where A is a symmetric matrix whose elements are given by

aij = (J/wiw;sin[c(t; — t;)]/[x(t: — t;)] (70)

and the eigenvector of A corresponds to scaled values of the prolate
spheroidal function at the quadrature abscissas of the Gauss-Legendre
quadrature formula, as seen from (68).

Transformation methods like the QR algorithm could be used to
solve (69). However, for fixed value of ¢ the magnitude of eigenvalue );
falls off to zero rapidly with increasing i once i has exceeded (2/7)e,
so only the eigenfunctions corresponding to a few largest eigenvalues
are needed in practice. In that case, the CG algorithm is likely to be
more efficient.

In Table 15.4, the eigenvalues computed by the CG-algorithm are
given. The results are obtained with double precision 256 point Gauss-
Legendre formula. The program is run in double precision with zg
as (1,-1,1,-1,...)T. The eigenvalues have been computed for four
different c, as defined in (63). In the table, the first column n describes
the order of eigenvalues, p denotes the magnitude of the exponent and
m the number of iterations required to obtain the eigenvalue with
eight significant digits of accuracy. In order to find the higher order
eigenvalues the initial guess is taken as orthogonal to the eigenvectors
associated with the already obtained eigenvalues. The efficiency of the
algorithm is evident because it finds a few desired eigenvalues directly
each of which takes only a few iterations to converge. This contrasts
the conventional algorithm which seeks all 256 eigenvalues in spite of
the need for only a few of them. The accuracy of the given results are
also quite satisfactory since the eigenvalues obtained by CG-algorithm
have more significant digits than those reported in Table I of [18].
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b. Application in Pisarenko’s Method of Frequency Estimation

The Pisarenko harmonic decomposition (PHD) method is one of
the earliest procedure for spectral estimation by eigenanalysis [21]. As-
suming the process consisting of M sinusoids in additive white noise,
PHD derives the sinusoidal frequencies, its powers, and white noise
variance from the known autocorrelation sequence r(0) to rz5(2M).
It is shown that the sinusoid frequencies can be determined by factoring
the eigenfilter polynomial

2M

kaﬂz_k (71)

k=0

whose coefficients vy ’s are given by the minimum eigenvector of auto-
correlation matrix Rapr41, where R, is defined by

rzz(o) rcz(l) oo rcz(P)
rcz(]-) "zc(o) oo rao(? - 1)

2 (12)
r22(P) Tzz(p—1) --- 722(0)

Therefore, PHD leads to a symmetric matrix minimum eigenvalue
problem which can be solved by any one of the several standard algo-
rithms. However, the autocorrelation sequence normally is not known
so we have to deal with the eigenequation

XTXv=2 (73)

where X is the covariance data matrix of the form

To z1 s T2M
1 z2 see Z2M

X=1" .. . (74)
EN 2ZN41 °**° TN42M

One obvious way to obtain the minimum eigenvalue and eigenvec-
tor in the matrix in (73) is to form the symmetric matrix XTX , and
then to invoke any one of the standard algorithms such as the QR al-
gorithm. However, we may choose to use the CG algorithm, which in
addition to the possible gain in efficiency and accuracy (as discussed in
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previous chapters) has the following advantages from technical point
of view:

Practically, for the ability to track slowly time-varying process it is
often necessary to implement PHD in an adaptive fashion. Algorithms
of this sort were first proposed by Thompson (4], followed by Reddy et
al. [5], Sarkar et al. [6], Vaccaro [22], and others. In this application,
the underlying matrix is not fixed but a changing matrix which is up-
dated with each new data sample. Since the minimum eigenvector of
the changing matrix corresponds to the true PHD solution only when a
large number of data samples are taken, the adaptive algorithms do not
compute the minimum eigenvector of the matrix, but only update the
trial eigenvector by one iteration of the algorithm for every new data
sample until the trial eigenvector converges to the minimum eigenvec-
tor of the matrix. Apparently, conventional transformation methods,
such as the QR method, can’t be used here. The use of conjugate gra-
dient algorithm in adaptive PHD was proposed by Chen et al. [10] and
Sarkar et al. [6].

Secondly, the CG algorithm is more flexible in taking advantage
of the special structure of matrix X to achieve savings in the compu-
tational effort, storage, and easier hardware implementation.

It is seen that most of the computation time in the conjugate
gradient algorithm is used for the evaluation of Xv, Xp,and XT(X v)
which are required each iteration. These are products of a matrix and
a vector each of which requires N x M operations. We can reduce
the number of operations required from N x M to approximately
2(M + N —1)log(M + N —1) by employing FFT which is much faster
than the conventional multiplication method when N and M are
large.

By observing the Hankel structure of matrix X, the product

Zo 1 22
1 T2 23 D2
Xp = |®2 T3 24 ”m (75)
T3 Z4 25 Po
T4 T Ze
as the convolution of two sequences {a} and {b}, where

{a} = {z0; 21; 225 23; 24; z5; 26} (76)

and
{6} = {Po; p1; p2; 0; 0; 0; 0} (77)
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The product is embedded in the convolution of the two sequences
{a} and {b}. This is clear as one observes the 3rd, 4th, 5th, 6th and
7th elements in the convolution of {a} and {b}. We know that the
convolution can be efficiently carried out by FFT. So if we perform the
FFT of the sequences {a} and {b} and multiply them and then take
the inverse FFT to obtain the sequence {c} as

{A} = FFT{a} (78)
{B} = FFT{b} (79)
{c} = {a} * {b} = (FFT) [FFT{a}FFT{b}] (80)

then the desired result is the 3rd to the 7th element of {c}. The total
number of operation is M N for direct multiplication and 2(M + N —
1)log(M + N — 1) using FFT. If (M + N — 1) is not a number of
type 2", zero padding could be used. It is seen that the application
of the FFT becomes more efficient as the matrix size increases. It is
interesting to point out that the FFT of the sequence of (M + N —1)
elements of X needs to be computed only once, and then it could
be used to compute Xp, Xv, and XT(Xv) as well in each iteration.
There is also a saving from a storage point of view. Instead of requiring
the storage of M X N elements of matrix X, one needs to stor only
(M+N —1) elements in an array. This idea of utilizing FFT to evaluate
matrix products has been used before [1-3].

15.5 Conclusive Remarks

For the minimum/maximum eigen-problem of a symmetric ma-
trix, the conjugate gradient is often more efficient and more accurate
than the conventional eigen-problem algorithms. Moreover, it is more
convenient to use with signal processing techniques such as the adap-
tation and the FFT. Hence, it offers a good alternative to conventional
algorithms for the solution of the maximum/minimum eigen-problem.
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