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GENERALIZED SYNTHESIS OF RAT RACE RING
COUPLER AND ITS APPLICATION TO CIRCUIT
MINIATURIZATION
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Abstract—Generalized synthesis of the rat race ring coupler is
developed with its four arms being allowed to have different
characteristic impedances. The transmission line theory incorporated
with the even-odd analysis is used to formulate the conditions for
solving the circuit parameters. The solution shows that a rat race
ring with a normalized area of 41.82% or 0.97λ-circumference can be
achieved. Based on the solutions, simulated bandwidths of the new
ring hybrids are reported. Two experimental circuits are measured for
validation check. One uses stepped-impedance sections to realize the
four arms for further size reduction. This circuit occupies only 13.12%
of that of a conventional hybrid ring at 1 GHz. It is believed that
this implementation has the best size reduction for a microstrip ring
hybrid in open literature. Measured scattering parameters show good
agreement with the simulated results.
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1. INTRODUCTION

Power dividers [1–3] and couplers [4–6] are fundamental and important
passive circuits in RF/microwave front end. They can be incorporated
with triplexers [1], balanced mixers and balanced amplifiers for equal
or unequal power division [2, 3].

Recently, circuit miniaturization has been a hot research topic
for passive microwave devices, e.g., couplers [4–6], antennas [7], and
filters [8]. For a rat race ring coupler, when frequency is low, the
circuit can be unacceptably large since its circumference is 3λ/2 long,
where λ is wavelength at the operation frequency. To reduce the
circuit size, the most intuitive way is to fold the line traces. The
folded structure in [4] has four- to five-fold reduction in footprint as
compared with the conventional ring hybrid. Incorporation of lumped
elements into the coupler is also quite effective for size reduction. In [5],
distributed capacitors are placed within the empty space of the hybrid.
It shows a size reduction by 62% compared with the conventional 3-
dB branch-line hybrid coupler while providing similar performance and
bandwidth. The inductors in [6], however, typically have a low quality
factor and will degrade the circuit performance.

Many effective approaches have been reported for miniaturizing
distributed rat race couplers. The designs based on the photonic
bandgap cells [9] and the compensated spiral compact microstrip
resonant cells [10] consume normalized areas of only 60% and 45%,
respectively. In [10–13], phase inverters of λ/4 long are used to replace
the 3λ/4 section, so that the normalized area can be reduced to
(2/3)2 ≈ 44.4%. Embedding the patterned apertures in the ground
plane under the peripheral of the hybrid can save 64% of the circuit
area [14]. The lumped distributed approach in [15] results in a size
reduction of 55.2%. The idea is close to the slow wave effect produced
by attaching periodical capacitive loads to transmission line sections
in [16].

In [17], λ/8- and λ/6-sections are proposed to design 3-dB hybrid-
ring couplers with 5λ/4 and 7λ/6 circumferences, respectively. The
area of the 7λ/6-ring uses about 60% of that of the conventional 1.5λ-
ring. In [18], the four sections of the 7λ/6-ring [17] are miniaturized by
the stepped-impedance configurations. The circuit shows a normalized
area of 21% and no passband up to the sixth harmonic. In addition
to size reduction, the stepped-impedance configuration is suitable for
dual-band design, e.g., [19] where the 2.45/5.2 GHz rat race couplers
use only a normalized area of about 21% at the first band. In [20],
a rat-race coupler with a peripheral of close to 1λ is achieved, and a
19λ/18-ring is realized and measured at 0.9 GHz. In their formulation,
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the four sections have identical characteristic impedance and three of
them are commensurate. In [21], design formulas for a generalized 180◦
hybrid coupler are presented.

This paper extends the derivation in [20] and [21] to a more
generalized or detailed fashion. The extension includes that the four
arms may have different characteristic impedances and that the three
shorter arms may have different lengths. Design equations are derived
for calculating the circuit parameters based on the transmission line
theory. The solutions show that the circuit circumference can be
further reduced to less than 1λ. Based on the solution, size reduction
factors and simulation bandwidths for reduced-length couplers are
investigated and discussed. In addition, the approach in [18] is
employed to replace the four arms at 1GHz, and it results in a
normalized circuit area of 13.12% or 0.54λ-circumference. In the
following, formula will be derived for synthesizing the peripheral of ring
hybrids. Some solutions are presented and the corresponding circuit
bandwidths are discussed. Measured results of experimental circuits
are compared with simulation data for validation of the theory.

2. FORMULATION

Figure 1 shows the layout of the rat race ring under investigation with
port designation. The reference port admittance is normalized to unity.
The parameters θi and Yi (i = 1, 2 and 3) denote the electric length
and characteristic admittance of the section, respectively. Based on the
even-odd analysis, the four-port network can be reduced to a two-port
shown in Fig. 2. Let jYa and jYb be respectively the input admittances
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seen at ports 1 and 2 looking into the sections loaded with YL. The
ABCD matrix of the two-port in Fig. 2 can be derived as

A = cos θ2 − Yb

Y2
sin θ2 (1a)

B =
j sin θ2

Y2
(1b)

C = j cos θ2 (Ya + Yb) + j sin θ2

(
Y2 − YaYb

Y2

)
(1c)

D = cos θ2 − Ya

Y2
sin θ2 (1d)

when YL = 0, i.e., the even mode, Ya = Y1 tan θ1 and Yb = Y3 tan θ3.
When excitation is taken at port 1, the reflection and transmission
coefficients can be derived as

Γe =
A + B − C −D

A + B + C + D
≡ E3 + jE4

E1 + jE2
(2a)

Te =
2

A + B + C + D
≡ 2

E1 + jE2
(2b)

where

E1 = cos θ2

(
2− tan θ2

(
Y1

Y2
tan θ1 +

Y3

Y2
tan θ3

))
(3a)

E2 = cos θ2

(
tan θ2

Y2
+ ∆

)
(3b)

E3 = sin θ2

(
Y1

Y2
tan θ1 − Y3

Y2
tan θ3

)
(3c)

E4 = cos θ2

(
tan θ2

Y2
−∆

)
(3d)

∆ = Y1 tan θ1 + Y3 tan θ3 + tan θ2

(
Y2 − Y1Y3

Y2
tan θ1 tan θ3

)
(3e)

For the odd mode, YL = ∞ and the two coefficients can be derived in
a similar fashion. Let

Γo =
X3 + jX4

X1 + jX2
(4a)

To =
2

X1 + jX2
(4b)

where Xk is Ek (k = 1, 2, 3 and 4) by replacing tan θ1 and tan θ3

with − cot θ1 and − cot θ3, respectively. Since the coupler is reciprocal
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and symmetric about the PQ plane, only six entries of its 4 × 4 S-
parameter matrix, i.e., Sm1 (m = 1, 2, 3 and 4), S22 and S32 have to
be derived. When excitation is taken at port 2, it can be validated
that the reflection and transmission coefficients are the results in (2)
and (4) by interchanging the indices 1 and 3.

Next, the following inter-port properties are used to formulate the
conditions for solving the circuit parameters:

1) S31 (isolation) = (Te − To)/2 = 0 ⇒ E1 = X1 and E2 = X2.
It leads to Y1(tan θ1 + cot θ1) + Y3(tan θ3 + cot θ3) = 0 and
tan2 θ1 tan2 θ3 = 1, so that

Y3 = Y1 (5a)

θ3 = θ1 ± nπ

2
, n = 1, 3, 5, . . . (5b)

2) S11 (input matching) = (Γe + Γo)/2 = 0 ⇒ E3 = −X3 and
E4 = −X4. The same conditions are obtained when S22 = 0
is used.

3) S21 = (Te +To)/2 = S41 = (Γe−Γo)/2 (in-phase outputs) ⇒ E3 =
X3 +4 and E4 = X4. The same conditions are obtained when the
out-of-phase condition S12 = −S32 is applied.

Based on the results of properties 2) and 3), we have E3 = 2, X3 = −2
and E4 = X4 = 0. The following conditions can then be obtained:

sin θ2 = R sin 2θ1 (6)(
1− Y 2

1 − Y 2
2

)
tan θ2 + 2Y1Y2 cot 2θ1 = 0 (7)

where R = Y2/Y1. In (5b), the solution of the minus sign is just that of
the plus sign with interchange of θ1 and θ3 (See also Fig. 1). Therefore,
choosing the plus sign will not lose any solution since Y1 = Y3, as shown
in (5a). Furthermore, for minimizing the ring size, n = 1 is used herein.
Based on (6), Fig. 3(a) plots the solution θ2 versus θ1 for various R
values. One can see that for any θ1 there are two θ2 solutions, and
vice versa. Note that the solution curves in Fig. 3(a) are bisymmetric
about θ1 = 45◦ and θ2 = 90◦. For circuit size miniaturization, only the
results in the region of θ1 ≤ 45◦ and θ2 ≤ 90◦ will be considered herein.
Similarly, when R = 1 we choose θ2 = 2θ1 instead of θ2 = π − 2θ1 as
the solution to (6). Substituting (6) into (7), we have

1
Y1

=
√

1 + R2 − 2R cot 2θ1 cot θ2 (8)

when R = 1, it can be readily derived that
1
Y1

=
√

2 (1− cot2 2θ1) (9)
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Figure 3. (a) θ2 and (b) Y −1
1 solutions as functions of θ1 for various R

values. (c) Normalized total circumference. The θ1 and θ2 values are
the electric lengths of the sections evaluated at the operation frequency.

which is identical to that given in [20], where all the solutions to the
ring hybrid design are in one curve. One can validate that (6) and (8)
are equivalent to (1a) and (1b) of [21]. It should be noted that the
condition that θ1 and θ2 have to obey in (2) of [21] is an inequality.
Here, it has an explicit form in (6) and is plotted in Fig. 3(a). Based
on (8), Fig. 3(b) plots the Z1 = Y −1

1 solutions against θ1. For each R
value, the real Z1 solution exists only within a certain θ1 range. By
enforcing Z1 = 0 in (8), it can be derived that the lower θ1 bound can
be calculated by

sin 2θ1 =
√

2
|1−R2|

√√
2(1 + R4)− (1 + R2) (10)

For example, when R = 5 and 0.2, the lower bounds are θ1 = 5.20◦
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and 32.25◦, respectively. For the particular case of R = 1, θ1 = 22.5◦
can be easily obtained by enforcing cot 2θ1 = 1 in (9) or by evaluating
(10) using the L’Hospital’s rule. When Z1 is a small number, say 0.2,
the θ1 value will be close to that given in (10) since each curve has
a large slope when Z1 = 0. The Z1 solution curves for R ≥ 1 have
various upper bounds which are also functions of R and can be derived
from (6):

θ1 = sin−1
(
R−1 sin θ2

)
/2 ≤ sin−1

(
R−1

)
/2 (11)

For example, when R = 5 and 1.25, the upper bounds are θ1 = 5.77◦
and 26.57◦, respectively. When R ≤ 1, the upper θ1 bounds can be
calculated from the corresponding lower bound in (10) since the Y −1

1
curves are symmetric about θ1 = 45◦.

Based on (5b) and (6), the total circumference of the ring can be
expressed in terms of θ1 as

Φ(θ1) = 4θ1 + 2 sin−1(R sin 2θ1) + 180◦ (12)

Figure 3(c) plots the total length ` of the hybrid ring normalized with
respect to 1.5λ, or

Φ = Φ(θ1)/540◦ (13)

for the given R values. Note that as compared with the traditional
1.5λ-ring, the normalized area is square of Φ.

One can design the circuit starting from a given size reduction,
e.g., Φ = 0.7, and Fig. 3(c) shows that there are many possible
R values. Alternatively, the design can start from a given θ1, say
θ1 = 30◦ > 22.5◦, a smaller R value will lead to a better area reduction.
Note that when R = 1, as in [20], the best theoretical size reduction
is ` = λ (normalized area = 4/9) under the limit of Y −1

1 = 0 where
θ1 = 22.5◦. If Y2 is different from Y1, i.e., R 6= 1, a hybrid ring with
` < λ can be obtained. It is also possible to start the design from a
given Y −1

1 in Fig. 3(b). Once the θ1 and R values are chosen, θ2 can
be determined by invoking the solution curves in Fig. 3(a).

3. SIMULATION AND MEASUREMENT

Figure 4 compares simulation and measured responses of a rat race
coupler, built on a substrate with εr = 2.2 and thickness = 0.508 mm,
with ` = 0.97λ at fo = 2.5GHz. The ring has a mean radius of
13.47mm and a normalized area of (0.97/1.5)2 = 41.82%. Some
important circuit parameters are θ1 = 9.4◦, θ2 = 65.8◦, θ3 = 99.4◦, and
R = 2.83. The simulation is done by the IE3D [22]. The magnitude
responses are in Fig. 4(a), and the relative phases in Fig. 4(b). At
fo, the measured |S11|, |S21|, |S31| (isolation) and |S41| are −21.4 dB,
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Figure 4. Performances of the experimental rat race coupler.
(a) Magnitude responses. (b) Phase responses. (c) Photograph
of the circuit. Y −1

1 = 62.15Ω (W1 = 1.09mm), Y −1
2 = 21.96Ω

(W2 = 4.64mm), θ1 = 9.4◦, θ2 = 65.8◦, θ3 = 99.4◦.

−3.37 dB, −29.56 dB and −3.36 dB, respectively. The best measured
|S11| is −33.9 dB at 2.47 GHz. The measured results show good
agreement with the simulation. Fig. 4(c) shows the photo of the
measured circuit.

Figure 5 plots the simulation bandwidths of the new rat race rings.
Although the entire circuit has four stepped-impedance junctions, only
the circuits with R = 5 and 0.2 need slight trimming for tuning the
|S31| dips at fo = 2.5GHz. A ring with R = 0.2 is used for test
the circuit bandwidth. The parameters are θ1 = 33.8◦, θ2 = 10.7◦,
θ3 = 123.8◦, Y −1

1 = 20.48Ω and Y −1
2 = 102.39Ω. The bandwidths

measured by |S11| = −15 dB, |S31| = −20 dB, |S12/S32| = ±0.5 dB,
|S21/S41| = ±0.5 dB, ∠S21−∠S41 = ±5◦ and ∠S12−∠S32 = 180◦±5◦
are 6.8%, 28.9%, 24.8%, 8.8%, 8.8% and 8.5%, respectively. The
bandwidth by |S11| = −15 dB has the smallest value, so that it is
used as a basis in Fig. 5 for demonstration. When θ1 ≤ 45◦, for a
given R value, a larger θ1 has a larger bandwidth, except for R = 1
and θ1 ≥ 35◦. For example, when R = 1.25, the bandwidth changes
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Figure 5. Bandwidths of the new rat race couplers. Bandwidth is
defined by the frequencies where |S11| = −15 dB. Substrate: εr = 2.2
and thickness = 0.508 mm.

from 5% to 35% when θ1 is varied from 20◦ to 25◦. One can see that
when R or 1/R is larger, the circuit possesses smaller bandwidth. It
is interesting to note that a uniform hybrid ring (R = 1) can have a
bandwidth from about 5% to 40% by choosing a proper θ1.

To show more details on the tradeoffs between bandwidth and
normalized circumference (Φ in (13)), Table 1 summarizes the data
shown in Fig. 3(c) and Fig. 5. For the extreme cases of R = 0.2 and
R = 5, some line widths are too small to be accepted for simulation
so that not all solutions in Fig. 3(c) are given in Fig. 5 and Table 1.
In Table 1, ΦL and ΦH denote the lower and upper limits of Φ in our
simulation, and ∆L and ∆H are their bandwidths, respectively. It is
noted that ΦL and ΦH will change when the substrate or the design
frequency is changed.

The technique in [18] is employed to further miniaturize the hybrid
ring in Fig. 4. The four arms are replaced by stepped-impedance
substitutes shown in Fig. 6. The electric length of the Y3-section is
longer than 90◦, so that it is replaced with a cascade of two identical
stepped-impedance sections. Each substitute has two low-impedance
(ZL) sections at both ends and a high-impedance (ZH) section in
between. The equivalence is established by equating their two-port
parameters at the design frequency. It can be validated that to
minimize its total length, the length of the ZH -section is twice of those
of the low-impedance ones (θH = θL) and can be analytically expressed
in terms of the impedance ratio r = ZH/ZL [18]. Note that both ZH

and ZL can be calculated when r and θH are given. In general, a larger
r value will lead to a better circuit reduction. The size reduction,
however, cannot be arbitrary since not only the realizable value of r
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is limited by the resolution of the fabrication process but also the ring
area limits the realizable width of the ZL-section. When the substrate
dielectric constant or the design frequency is increased, the ring area
becomes smaller and hence the size reduction factor.

Figures 7(a) and 7(b) show the performances of a fabricated circuit
designed at 1.03 GHz. The values of θL (= θH), ZL and ZH for
the four arms are in Table 2. The length of the Y1-section of the
circuit in Fig. 4 is 2θ1 = 18.8◦, and the total length of the stepped-
impedance section is only 4θL = 13.2◦. Similarly, Y2-section (65.8◦)
and Y3-section (198.8◦) are replaced by their substitutes of total lengths
39.2◦ and 104◦, respectively. Thus the stepped-impedance sections
contribute an area reduction factor of (195.6◦/349.2◦)2 = 31.4%. The
total circumference is 0.54λ and the normalized circuit area is only
13.12%. The size reduction is much better than that of the 7λ/6-
ring in [18] and believed to be the best miniaturization of planar rat
race couplers in open literature. The measured |S11|, |S21|, |S31| and
|S41| are −22.5 dB, −3.34 dB, −25 dB and −3.56 dB, respectively. The

Table 1. Tradeoffs between bandwidth and normalized circumference
of the rat race coupler.

R
Φ (See (13)) ∆(%, |S11| = −15 dB)
ΦL ΦH ∆L ∆H

0.2 0.62 0.65 6.80 12.2
0.4 0.66 0.75 9.50 24.2
0.6 0.68 0.80 9.20 34.5
0.8 0.68 0.86 7.70 51.5
1.0 0.67 1.00 2.70 39.0
1.25 0.68 0.85 5.40 36.0
1.67 0.67 0.79 6.10 22.6
2.5 0.65 0.73 4.50 12.6
5.0 0.63 0.65 2.90 4.50

Table 2. θL, ZL and ZH of the stepped-impedance sections for
substituting the arms of the rat race coupler in Fig. 7.

Section θL = θH ZL (Ω) WL (mm) ZH (Ω) WH (mm)
Y1 3.3◦ 25.4 3.89 149.0 0.15
Y2 9.8◦ 6.6 18.03 55.0 1.35
Y3 13.0◦ 13.5 8.24 134.6 0.21



Progress In Electromagnetics Research, Vol. 108, 2010 61

best isolation (|S31|) is −35.5 dB at 1.01 GHz. The measured responses
are in good agreement with the simulation data. Fig. 7(c) shows the
photo of the experimental rat race coupler. The final circuit may look
similar to those in [5] and [15], but the approach is quite different.
Note that the stepped-impedance section in Fig. 6 consists of one high-
impedance section in the middle and in series connection with two low-
impedance sections on both sides. The two low-impedance sections are
treated as series transmission line sections, neither a capacitor within
empty space of the hybrid [5] nor shunt stubs along the main line [15].
When the frequency of the design in Fig. 7 is increased to 2.5 GHz, the
total stepped-impedance peripheral becomes 0.78λ and the normalized
circuit area is increased to 27.2%, since the ring area limits the line
width of the low-impedance sections.

Table 3 compares the bandwidths of the conventional 1.5λ ring,
the 0.97λ rat race in Fig. 4, and the 0.54λ and 0.78λ circuits in
Fig. 7. The leading three circuits are designed at 2.5 GHz. The
circuit in Fig. 4 offers smaller bandwidths than the traditional rat race
coupler. In particular, the bandwidths measured by |S11| = −15 dB
and |S31| = −20 dB of the circuit in Fig. 4 are about respectively one
tenth and one third of those of the 1.5-λ ring. The reference levels
for defining bandwidths of return loss and isolation can be referred
to [11]. The simulation bandwidths measured by ∠S41 − ∠S21 = ±5◦
and ∠S12 − ∠S32 = 180◦ ± 5◦ of the 0.78λ circuit and that in Fig. 4
are between 4.4% and 12.4%. A comparison of the data of 0.54λ and

Table 3. Bandwidths of the conventional 1.5λ-ring the 0.97λ-rat race
in Fig. 4, and the 0.78λ- and 0.54λ-circuits in Fig. 7.

Circuit

(2.5GHz)

|S11| = −15 dB

(Input matching)

|S31| = −20 dB

(Isolation)

∠S41 − ∠S21

= ±5◦
∠S12 − ∠S32

= 180◦ ± 5◦

Sim. Mea. Sim. Mea. Sim. Mea. Sim. Mea.

1.5λ-ring 39.5% - 31.3% - 16.1% - 15.3% -

0.97λ-ring 3.9% 4.0% 11.9% 9.4% 5.7% 2.9% 10.8% 2.9%

0.78λ-ring 3.2% - 5.2% - 12.4% - 4.4% -

0.54λ-ring

(1GHz)
4.6% 3.9% 6.3% 5.9% 16.7% 15.5% 7.2% 9.1%

Z  ,i       i
 θ  θ

L      LZ   , Z   ,L      L
 θ

Z   , 2H         H
 θ

Figure 6. Substitution of a uniform section by a stepped-impedance
section for circuit miniaturization.
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Figure 7. Performances of the 0.54λ-ring coupler. (a) Magnitude
responses. (b) Relative phase responses. (c) Photograph of the
experimental rat race coupler. Geometric parameters are in Table 3.

0.78λ in Fig. 7 shows that ring miniaturized by the stepped-impedance
approach at a lower frequency has larger simulation bandwidths.

4. CONCLUSION

A generalized synthesis for rat race coupler is performed and applied to
circuit miniaturization. Design equations are provided for calculating
the electric lengths and the characteristic impedances of the four
arms. There are two degrees of freedom in choosing the geometric
parameters for synthesis of the rat race couplers. The upper and lower
bounds of the solutions are given in analytical expressions. Operation
bandwidths of the newly synthesized miniaturized rat race couplers
are simulated and discussed. A 0.97λ-ring operating at 2.5GHz is
fabricated and measured. The rat race is further reduced by replacing
the four arms with stepped-impedance sections at 1 GHz. The circuit
occupies only 13.12% of the area of a conventional 1.5λ-ring and its
performances are compared with the 0.97λ-ring and the conventional
rat race. In general, the size reduction leads to a decreased circuit
bandwidth.
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