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Abstract—A highly accurate, fast algorithm is proposed to evaluate
the finite Fourier transform of both continuous and discontinues
functions. As the discretization is conformal to the function
discontinuities, this method is called the conformal Fourier transform
(CFT) method. It is applied to computational electromagnetics to
calculate the Fourier transform of induced electric current densities in
a volume integral equation. The spectral discrimination in the CFT
method can be arbitrary and the spectral range can be as large as
needed. As no discretization for the Fourier exponential kernel is
needed, the CFT method is not restricted by the Nyquist sampling
theorem, thus avoiding the aliasing distortions that exist in other
traditional methods. The accuracy of the CFT method is greatly
improved since the method is based on high order interpolation and
the closed-form Fourier transforms for polynomials partly reduce the
error due to discretization. Assuming Ns and N are the numbers
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of sampling points in the spatial and spectral domains, respectively,
the computational cost of the CFT method is O((M + 1)N log2 L),
where M is the interpolation order and L = Ns−1

M . Applications in the
spectral analysis of electromagnetic fields are demonstrated.

1. INTRODUCTION

Fourier transform (FT), as the most important basis for frequency
domain techniques, is often encountered in scattering [1–3], radar
antennas [4–6] and many other fields in electromagnetics [7–9].

Discrete Fourier transform (DFT) is now the dominant tool to
obtain the Fourier spectrum in numerical computation. DFT can
be implemented by fast Fourier transform (FFT) algorithms with the
computational cost of O(N log N), where N is the number of sampling
points. However, the accuracy of the results obtained with the DFT
depends on the analyticity of the function under consideration; it can
be sometimes very bad if there are discontinuities in the function [10].
The Nyquist sampling theorem [11] is a mandatory requirement for
DFT to work well, i.e., the sampling rate must be at least twice the
highest frequency of the function in the spatial domain (or temporal
domain). However, nearly all data collected in practice are finite in
duration, which means that the function is space-limited (or time-
limited) and the highest frequency is infinite for such a function. This
causes the aliasing distortions [12]. The frequency resolution and range
is decided by the sampling points in FFT. The Chirp-z algorithm [13]
can make the frequency resolution and range more flexible; however,
since it is still based on the trapezoidal quadrature, when it is used to
obtain the Fourier transform, it still suffers from aliasing distortions.

There have been many works done to improve the accuracy
in estimating the Fourier transform with a finite duration and
discontinuous functions; herein we call this the finite discontinuous
Fourier transform. Simonen and Olkkonen [14] use Simpson rule to
perform the integration; Zeng [15] proposes linear interpolation for
f(x); Morelli [16] uses third-order interpolation for f(x), the input
function in the spatial domain; Froeyen and Hellemans in [10] and
Beaudoin and Beauchemi in [11] use the reestablishing second- and
high-order Taylor expansion to approximate f(x), respectively; Fan
and Liu [17] introduce a double interpolation procedure for f(x) and
the oscillatory kernel e−j2πux, which is extended to multi-dimension
in [11]; and [1] has derived an algorithm using high-order interpolation
for f(x) with Gauss-Chebyshev-Lobatte (GCL) points. Liu et al. [18]
have recently proposed a finite-difference time-domain method that
can provide calculations for the desired nonuniform frequency points.
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From the point of view of numerical computation, DFT is a
trapezoidal quadrature scheme. The discretization is implemented in
both the input function f(x) and the oscillatory kernel e−j2πux. In this
scheme, firstly, in order to represent the oscillating kernel with discrete
sample points, there should be at least two points per wavelength (or
two points per period) of e−j2πux. This is an intuitive explanation of
the Nyquist sampling theorem. Secondly, the trapezoidal quadrature
can be regarded as using a piecewise linear function to approximate the
kernel f(x)e−j2πux, and as is well known, a higher-order interpolation
can obtain better accuracy. Based on these two observations, a method
is proposed in this contribution that uses higher-order interpolation for
f(x) and no discretization for the oscillating kernel e−j2πux to obtain
the Fourier spectrum. The proposed method can obtain much higher
accuracy estimation of the Fourier integral with a low sampling rate,
thus overcoming the aliasing phenomenon; it can obtain the Fourier
spectrum in a frequency range as large as necessary without satisfying
the Nyquist sampling theorem. Moreover, The frequency resolution
can be arbitrary.

Section 2 introduces the algorithm of the proposed Conformal
Fourier transform (CFT). In Section 3, the algorithm is applied to
solve a linear time invariant (LTI) system first, and then used to
evaluate the Fourier spectrum of the induced electric current density
in a layered medium in electromagnetics with exponential accuracy
and low computational time. Section 4 gives the conclusions of this
contribution.

2. METHOD

Before the discussion, an important result is shown first. The proof of
this can be found in Appendix A.

Lemma 1: The finite Fourier transform of a monomial can be
explicitly expressed as
∫ 1

−1
tme−j2πutdt = ew

m∑

s=0

(−1)m−sm!
(m− s)!

1
ws+1

−e−w
m∑

s=0

m!
(m− s)!

1
ws+1

(1)

where w = 2πju, and m is a non-negative integer.
In the following, a highly accurate method is developed for the

Fourier transform of discontinuous functions, and the fast computation
algorithm is also derived.
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2.1. CFT for a Continuous Function

Now we consider the Fourier transform of a discontinuous function
f(x). Assume that f(x) is continuous within a finite support domain
[p0, p1], p1 > p0 and zero elsewhere. Its continuous Fourier transform
F (u) is defined as

F (u) =
∫ p1

p0

f(x)e−j2πuxdx (2)

We divide the interval [p0, p1] into [x`, x`+1], where x` = x1 + (` −
1)∆, ∆ = p1−p0

L , x1 = p0, xL+1 = p1, ` = 1, 2, . . . , L. Approximate
f(x) in each element by an M -th order Lagrange interpolation
polynomial with interpolation points {x`,k}M+1

k=1 .

f(x)[x`,x`+1] ≈ P
(M)
` (x) (3)

Substituting (3) into the Fourier integration (2), we obtain
∫ p1

p0

f(x)e−j2πuxdx ≈
L∑

`=1

∫ x`+1

x`

P
(M)
` (x)e−j2πuxdx (4)

By doing the following change of variables in the `-th element

x = at + h` (5)

where

a =
∆
2

, h` =
x`+1 + x`

2
= x1 +

(
`− 1

2

)
∆, (6)

Equation (4) can be rewritten as
∫ p1

p0

f(x)e−j2πuxdx
w:=j2πu≈ a

L∑

`=1

e−wh`

∫ 1

−1
P

(M)
` (at + h`)e−watdt (7)

Denoting the interpolation points in [−1, 1] as {tk}M+1
k=1 , the

interpolation points {x`,k}M+1
k=1 in the `-th element can be obtained

by (5). Denoting the interpolation basis function at {tk}M+1
k=1 as

Lk(t) =
M∑

m=0

D(k)
m tm, there is

P
(M)
` (at + h`) =

M+1∑

k=1

f(x`,k)
M∑

m=0

D(k)
m tm (8)
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Substituting (8) into (7) and then applying Lemma 1, we obtain
∫ p1

p0

f(x)e−wxdx ≈ ae−wx1

M∑

s=0

As

(wa)s+1
(9)

where

As =
L∑

`=0

αs,`e
−wl∆, Bm,` =

M+1∑

k=1

D(k)
m f(x`,k) (10)





αs,0 =
M∑

m=s

m!
(m− s)!

(−1)m−sBm,1,

αs,` =
M∑

m=s

m!
(m− s)!

[(−1)m−sBm,`+1 −Bm,`], ` ∈ [1, L− 1]

αs,L = −
M∑

m=s

m!
(m− s)!

Bm,L

(11)

Theoretically, if (9) is used to evaluate (2), the result should be
accurate if f(x) is a polynomial with the order not large than M in its
finite support domain. Let us consider a function

f(x) =
{

x2 + x + 1, x ∈ [−1
2 , 1

2 ]
0, otherwise (12)

Fig. 1 shows the relative error of the spectra evaluated with (9). The
computation is performed with Matlab R2009b in double-precision. It
is shown that the error become very large when u is near zero, as the
interpolation order M increases.

This unreasonable phenomenon is due to the round-off error in
computation. Detail about the round-off error can be found in [19].
It can be seen that αs,` and As will increase in the same order as s!
when s increases. This will cause large numerical round-off errors in
the floating point computation of (9) when |wa| is small and M is
large. We will make use of the Taylor expansion of ex to overcome this
difficulty,

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xS

S!
+ . . . ≈

S∑

s=0

xs

s!
(13)

Substituting (6), (8) and (13) into (7) yields
∫ p1

p0

f(x)e−j2πuxdx ≈ ae−w(x1− 1
2
∆)

S∑

s=0

A0
s(wa)s (14)
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Figure 1. Relative Error of spectra evaluated with (9) for (12). (a)
M = 2, Ns = 269. (b) M = 6, Ns = 349. (c) M = 10, Ns = 371. (d)
M = 16, Ns = 385. (e) M = 18, Ns = 397. (f) M = 20, Ns = 401.

where

A0
s =

L∑

l=1

α0
s,le

−wl∆, α0
s,l =

M∑

m=0

(−1)s + (−1)m

m + s + 1
Bm,l, (15)

In the truncated series in (13), it is reasonable to choose S = 30,
for x ≤ 3 in double precision because 330

30! = 7.7621e− 019. Therefore,
with double precision computation, (14) is used if |wa| ≤ 3; otherwise
(9) is used. S can be chosen to be 30. S and the upper boundary of
|wa| can be adjusted to obtain proper accuracy. For convenience, we
define

CFTf, L, p0, p1(u) =





ae−wx1

M∑

s=0

As

(wa)s+1
, |wa| > 3

ae−w(x1− 1
2
∆)

S∑

s=0

A0
s(wa)s, |wa| ≤ 3

(16)

We call the method using (16) to compute the Fourier Transform (2)
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(a) M=2, Ns =269 (b) M=6, N s =349

(c) M=10, Ns =371 (d) M=16, Ns =385

(e) M=18, N s =397 (f) M=20, N s =401

Figure 2. Relative Error of spectra evaluated with (16) for (12). (a)
M = 2, Ns = 269. (b) M = 6, Ns = 349. (c) M = 10, Ns = 371. (d)
M = 16, Ns = 385. (e) M = 18, Ns = 397. (f) M = 20, Ns = 401.

as the Conformal Fourier transform (CFT). The relative error of the
spectrum evaluated with (16) is shown in Fig. 2.

Now, let us discuss the computational cost of the CFT
method (16). Suppose the sampling frequency are located at u =
n∆f, n = −N/2,−N/2 + 1, . . . , N/2 − 1, where ∆f represents the
frequency resolution that can be chosen as any number according to
the requirement, then N can be chosen according to the interested
frequency range. Suppose the the number of u points satisfying
|wa| < 3 is n1, then the number of u points satisfying |wa| ≥ 3 is
n2 = N − n1.

It can be seen that the total number of sampling points in
the space domain is Ns = ML + 1 when (16) is used, if the
interpolation points satisfy t1 = −1, tM+1 = 1. It requires O(M2)
real multiplications to obtain m!

(m−s)! in (11) and O[(M + 1)2] real
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multiplications to obtain D
(k)
m in (8) (See Appendix B for the algorithm

to compute D
(k)
m ). So the cost of computing {αs,l}M,L+1

s=0,l=1 in (11) is
O(MNs). Equations (10) and (15) are both in the form of chirp z-
transform and thus can be computed at the cost of O((M +1)N log L)
and O((S + 1)n1 log L) complex multiplications, respectively [20]. By
using the Compensated Horner scheme [21], the results of (9) for u
satisfying |2πua| ≥ 3 can be obtained with O((M + 1)N) complex
multiplications, and (14) for satisfying |2πua| < 3 can be obtained
with O((S +1)n1) complex multiplications. So the computational cost
of (16) for CFT is O((M + 1)N log L) complex multiplications.

2.2. CFT for Piecewise Continuous Functions

If f(x) is a piecewise continuous function with the first kind of
discontinuity located at [p0, p1, . . . , pI ], making use of (16) in each
section, we can obtain the result of CFT for f(x) as

F (u) =
i=I−1∑

i=0

∫ pi+1

pi

f(x)e−j2πuxdx ≈
i=I−1∑

i=0

CFTf, Li, pi, pi+1(u) (17)

It is easy to know that Equation (17) requires O((M + 1)N
I−1∑

i=0

log Li)

complex multiplications, where Li is the number of elements in
[pi, pi+1], based on the discussion in part A.

It needs to be pointed out that the only approximation used in
deriving (16) and (17) is the Lagrange interpolation for f(x). Since
there is no any approximation for the oscillatory kernel e−j2πux term
in Fourier transform (2), the algorithm is not restricted by the Nyquist
sampling theorem, and therefore, overcomes the aliasing distortion.

3. NUMERICAL RESULTS

Example 1 illustrates how CFT overcomes aliasing distortions under
a low sampling density. Then CFT is used to evaluate the Fourier
spectrum of an induced electric current density in a layered medium;
we show that CFT is fast and can obtain results with high accuracy,
and the error has exponential convergence.

Example 1: Consider a stable LTI system characterized by

d2y(t)
dt2

+ 4
dy(t)
dt

+ 3y(t) =
dx(t)

dt
+ 2x(t). (18)
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The output of the system can be achieved by the Fourier method
according to the convolution theorem. Assume the input is

x(t) =
{

e−t, t ∈ [0, +∞]
0, otherwise (19)

First from (18), we know the frequency response of the system is
H(w) = w+2

w2+4w+3
. The expression of the Fourier transform of input

signal (19) can be obtained as X(w) = 1
w+1 . So the Fourier transform

of output y(t) is Y (w) = H(w)X(w) = w+2
(w2+4w+3)(w+1)

.

F [y(t)](w) is used to represent the Fourier transform of function
y(t). So Y (w) = F [y(t)](w). The property of Fourier transform
F [Y (w)](t) = F [F [y(t)]](t) = y(−t) leads to y(t) = F [Y (w)](−t).
That means y(t) can be obtained through Fourier transform of Y (w).

The results using CFT and FFT both with 321 sampling points
in the spatial domain are shown in Fig. 3. The aliasing distortion with
FFT can be observed clearly in the figure, as the sampling density used
here is lower than the Nyquist sampling density. However, with CFT,
we can obtain accurate estimation of the output signal. By increasing
the sampling points, we find that 4096 points are needed to obtain
0.48% relative RMS error with FFT; however, CFT requires only 573
sampling points to achieve 0.54% relative RMS error.

Example 2: In electromagnetic analysis, the spectra of sources
and fields are often required. Here we consider a plane wave normally
impinging on a seven-layer medium with frequency f0 = 2 GHz
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Figure 3. Comparison of the CFT and FFT results for example 1.
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in the vacuum background. The layer interfaces are located at
[0.1, 0.2, 0.5, 0.7, 0.8, 0.9]; the relative magnetic permeability is 1
for all layers, and the relative permittivity is ε1 = 1, ε2 = 32, ε3 = 12,
ε4 = 20, ε5 = 40, ε6 = 35, ε7 = 1, respectively.

The induced electric current density J(x) and its spectral
distribution obtained by CFT are plotted in Fig. 4 and Fig. 5. The
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Figure 4. Spatial distribution of an induced electric current density
in a seven-layer medium impinged by a plane wave at 2 GHz.
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Figure 5. Spectral distribution of the induced electric current density
in Fig. 4.
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Figure 6. Relative RMS error of the evaluated spectrum by CFT
when M is fixed for the problem in Fig. 4.

wave number (spatial frequency) interested are assumed to locate
at u = −512, . . . , 511. We use M to represent the interpolating
order. Fig. 6, plotted in a log log scale, shows the relative RMS
error versus the sampling density in terms of the number of points
per wavelength (PPW) when increasing the sampling density with a
fixed M . It requires only 5.44 PPW to achieve 0.49% error, 7.45 PPW
to achieve 0.016% error, and 10.27 PPW to achieve 0.00047% error
using interpolation order M = 10.

The above is a typical small problem, and the exponential
convergency of CFT error is shown in Fig. 6.

In real applications, often the electrical size is large, namely the
domain is much larger than the typical wavelength. Under such
circumstances, it can be quite challenging for a traditional method
to obtain accurate results. Let us consider a larger scale problem with
the same plane wave normal incidence into a large five-layer medium
in Example 3. We will compare the performance of CFT with FFT
in terms of accuracy, number of sampling points required and the
computation time.

Example 3: Consider a plane wave impinges on a five-layer
medium with f0 = 2 GHz in the vacuum background. The layer
interfaces are located at [1, 4, 7, 9], ε1 = 1, ε2 = 3, ε3 = 2, ε4 = 5,
and ε5 = 1; and the wave numbers in the three center layers are
34.6409, 28.2842, 29.8142, respectively.
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Figure 7. Spatial distribution of the induced electric current density
in a large five-layer medium impinged by a plane wave at 2 GHz.

The induced electric current density J(x) is shown in Fig. 7. The
frequency interested are assumed to be located at u = −512, . . . , 511.
Table 1 shows the comparisons of accuracy, number of sampling
points in the spatial domain and CPU time with CFT and FFT. The
computation is performed on the same desktop computer with Matlab

Table 1. Error, number of sampling points and run time for CFT and
Bluestein’s FFT (double-precision).

Error Ns Timing (s)

FFT

1.056× 10−2 8192 0.0430

5.107× 10−3 16384 0.0925

2.534× 10−3 32768 0.2007

6.319× 10−4 131072 1.1070

7.896× 10−5 1048576 11.7282

CFT

4.803× 10−5 543 0.2768

2.604× 10−7 723 0.3368

8.601× 10−10 1011 0.3569

9.179× 10−12 1605 0.3921
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R2009b for double-precision. Bluestein’s FFT is used here. With a
comparable CPU time, CFT can obtain nearly ten orders of magnitude
more accurate than FFT with nearly ten times fewer sampling points.
To achieve 7.896×10−5 error with FFT, it requires 10486576 sampling
points in the spatial domain and the CPU time is 11.7282 s. However,
to achieve 4.803× 10−5 error, CFT requires only 543 sampling points
and the CPU time is 0.2768 s; in other words, CFT requires very few
sampling points and at the same time, approximately 42 times faster.

4. CONCLUSION

In this contribution, the conformal Fourier transform algorithm as
a high accuracy method for evaluating the finite Fourier transform
for discontinuous functions is presented. The algorithm makes use of
high order interpolation for the function in space domain and with no
approximation to the oscillatory kernel. This algorithm can achieve
any large range of spectra with arbitrary frequency resolution without
the restriction of the Nyquist sampling theorem. The accuracy of this
algorithm is much better than traditional Discrete Fourier transform
with comparable computation time in FFT; at the same time the
number of sampling points required in the spatial domain can be
greatly reduced. The computation cost of the proposed CFT algorithm

is O[(M + 1)N
I−1∑

i=0

log Li]. The algorithm is useful in computational

electromagnetics and other areas where spectral methods are required.
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APPENDIX A. PROOF OF LEMMA 1

Lemma 1: The finite Fourier transform of a monomial is
∫ 1

−1
tme−j2πutdt=ew

m∑

s=0

(−1)m−sm!
(m−s)!

1
ws+1

−e−w
m∑

s=0

m!
(m−s)!

1
ws+1

(A1)

where m is a non-negative integer.
Proof: Principle of Mathematical Induction is adopted here.
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When m = 0, the left-hand side of (A1) can be rewritten into∫ 1

−1
e−j2πutdt =

ej2πut

−j2πu
|t=1
t=−1 =

ej2πu − e−j2πu

j2πu
=

ew − e−w

w
(A2)

and right hand of (A1) can be rewritten as

ew
m∑

s=0

(−1)m−sm!
(m− s)!

1
ws+1

−e−w
m∑

s=0

m!
(m−s)!

1
ws+1

|m=0 =
ew−e−w

w
(A3)

It is obvious that (A2) = (A3), so (A1) holds for m = 0.
Then we assume that for m = S, (A1) holds, or

∫ 1

−1
tSe−j2πutdt = ew

S∑

s=0

(−1)S−sS!
(S−s)!

1
ws+1

− e−w
S∑

s=0

S!
(S−s)!

1
ws+1

(A4)

When m = S + 1, according to Newton Leibniz formula the left-hand
side of (A1) is∫ 1

−1
tS+1e−j2πutdt = − tS+1e−wt

w
|t=1
t=−1 +

S + 1
w

∫ 1

−1
tSe−wtdt.

Substituting (A4) into the above equation, we obtain∫ 1

−1
tS+1e−j2πutdt =

(−1)S+1ew

w
− e−w

w

+ ew
S+1∑

s=1

(−1)S+1−s(S + 1− s)!
(S + 1− s)!

1
ws+1

− e−w
S+1∑

s=1

(S + 1)!
((S + 1)− s)!

1
ws+1

.

It is obvious that (−1)S+1ew

w = (−1)S+1−0(S+1)!
(S+1−0)!

1
w0+1 , e−w

w =
(S+1)!

(S+1−0)!
1

w0+1 . Hence, (A1) holds when m = S + 1. So (A1) holds
for all non-negative integer m.

APPENDIX B. ALGORITHM FOR COMPUTING D
(K)
M

For M + 1 different points {tk}M+1
k=1 , {D(k)

m }M,M+1
m=0,k=1 are defined as

Lk(t) =
M+1∏

i=1, i 6=k

t− ti
tk − ti

=
M∑

m=0

D(k)
m tm. To compute D

(k)
m , we define

l0(t) =
M+1∏

i=1

(t − ti) =
M+1∑

m=0

Emtm, lk(t) =
M+1∏

i=1, i 6=k

(t − ti) =
M∑

m=0

dmtm.

Hence,

lk(t) =
l0(t)
t− tk

(B1)
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Computing cost for Em is O(M2) [22]. According to (B1),{
d

(k)
M = E(M+1)

d
(k)
m = E(m+1) + d

(k)
m+1tk, m = M − 1,M − 2, . . . , 0

(B2)

It requires M2+M real multiplications to compute (B2). Then lk(tk) =
M+1∏

i=1, i6=k

(t− ti) =
M∑

m=0

dmtmk can be computed by the Horner scheme [21]

with M real multiplications. It can be seen that D
(k)
m = d

(k)
m

lk(tk) . So

{D(k)
m }M,M+1

m=0,k=1 can be computed with the cost of O(M2).
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