ONE-DIMENSIONAL PHOTONIC HETEROSTRUCTURE WITH BROADBAND OMNIDIRECTIONAL REFLECTION

J. Manzanares-Martinez, R. Archuleta-Garcia
P. Castro-Garay, D. Moctezuma-Enriquez
and E. Urrutia-Banuelos

Departamento de Investigacion en Fisica
Universidad de Sonora
Apartado Postal 5-088, Hermosillo, Sonora, Mexico

Abstract—In this work we report the modeling of an one-dimensional photonic heterostructure which presents a giant omnidirectional photonic band gap. This omnidirectional reflector is made by the union of lattices with the same filling fraction and index contrast, but with different lattice periods. Using the scalability of the electromagnetic wave equation we present a simple manner to enlarge -as large as desired- the omnidirectional mirror. We apply our method to design an omnidirectional reflector for all the visible range.

1. INTRODUCTION

Photonic Crystals (PCs) are periodic dielectric structures in one, two or three dimensions which exhibit Photonic Bands Gaps (PBGs) [1]. These structures have been investigated intensively because of their ability to control the flux of light in a new manner opening the possibility to design optical and microwave devices [2–11]. The PBGs are the result of destructive interference of electromagnetic waves in PCs structures.

If a properly designed PC reflects electromagnetic waves impinging at any angle with any polarization, then an Omnidirectional Mirror (OM) can be achieved. The PC-based OMs have negligible loss compared with old metallic mirrors, specially at infrared, optical or higher frequencies [12,13]. OMs have exciting applications, as for

Received 4 November 2010, Accepted 26 November 2010, Scheduled 1 December 2010
Corresponding author: Jesus Manzanares-Martinez (jmanza@cifus.uson.mx).
example perfect substrates for photonic antennas [14–19], filters in
solars cells [20, 21] or enhancing the radiation emitted in planar cavities
for the design of new PC-based low threshold lasers [22, 23].

It has been demonstrated that one-dimensional PC (1D-PC)
structures (such as multilayer films) can exhibit an OM [12, 24–26]. It
is also known that the range of the OM is determined by the contrast
dielectric functions between the PC composites; the larger the
contrast, the wider the range. However, there are practical limitations
for obtaining multilayers with a large dielectric contrast because the
experimental techniques are nowadays limited to the fabrication of low
dielectric contrast structures [27]. As a consequence of the narrow
OM that can be achieved in 1D-PCs, only a limited applicability of
these structures can be attained in practical situations. Nevertheless,
several authors have theoretically demonstrated that the frequency
range of the OM can be enlarged by using a Photonic Heterostructure
(PH), made by the combination of two or more 1D-PCs [28–36].

Some of the present authors have reported that it is possible to
enlarge the total reflection range by using a PH in the case of normal
incidence [37–39]. In this paper, based in a systematic investigation
of the 1D-PCs properties, we present a method to enlarge-as much as
desired- the frequency range of OMs. The central idea is that the OMs
overlap each other. We design a PH with a giant OM composed by
the union of several PCs lattices or submirrors of the same materials
and filling fractions, but of different lattice periods. We present a
simple rule to determine the lattice periods using the scalability of the
eigenvalues obtained from the calculation of the electromagnetic wave
equation, which to our knowledge seems not to have been considered
in previous investigations. Our study has been carried out in two
steps. First, in Section 2 we consider an OM and we present the
mathematical formulation to determine the enlargement of the PBG.
Second, we demonstrate the method for the design of an OM for the
entire visible range. The results obtained are summarized in Section 4.

2. THEORY

We start our analysis by considering an unit cell composed of two
materials of high (ε_H) and low (ε_H) dielectric function as illustrated
in Fig. 1(a). The width of each layer is d_H and d_L, respectively. The
repetition of the unit cell in the x direction gives rise to an infinite
one-dimensional photonic crystal, as illustrated in Fig. 1(b). We
consider two independent vibration modes for the propagation in the x-
y plane. One is the Transversal Electric (TE) mode where the electric
field is parallel to the z plane. The other is the Transversal Magnetic
Figure 1. Geometry of the one dimensional photonic crystal. (a) Unit cell of width \(d = d_H + d_L \). (b) Schematic of the infinite crystal.

(TM) mode with the electric field parallel to the \(x-y \) plane. The wave equations for the transverse fields \(E_z(x, y) \) (TE) and \(H_z(x, y) \) (TM) are [41]

\[
\frac{1}{\varepsilon(x)} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) E_z(x, y) = -\frac{\omega^2}{c^2} E_z(x, y) \tag{1}
\]

\[
\left[\frac{\partial}{\partial x} \frac{1}{\varepsilon(x)} \frac{\partial}{\partial x} + \frac{1}{\varepsilon(x)} \frac{\partial^2}{\partial y^2} \right] H_z(x, y) = -\frac{\omega^2}{c^2} H_z(x, y) \tag{2}
\]

To solve these equations we consider that the inverse of the dielectric function can be written in terms of a Fourier series in the form

\[
\frac{1}{\varepsilon(x)} = \sum_n \alpha(n) e^{i2n\pi x/d} \tag{3}
\]

where \(n \) is a integer number. The Fourier coefficients are [40]

\[
\alpha(n) = \left\{ \frac{1}{\varepsilon_L} + f \left(\frac{1}{\varepsilon_H} - \frac{1}{\varepsilon_L} \right) \right\} \delta_{n,0} + \left\{ \left(\frac{1}{\varepsilon_H} - \frac{1}{\varepsilon_L} \right) \frac{\sin(f\pi n)}{n\pi} \right\} (1 - \delta_{n,0}) \tag{4}
\]

where the filling fraction is defined as space filled by the high dielectric function material in the unit cell, \(f = d_H/d \). The periodic electric and magnetic fields are written as Fourier series in the form

\[
E_z(x, y) = \sum_n E_z(n) e^{i(k_x+2n\pi/d)x+ik_y y} \tag{5}
\]

\[
H_z(x, y) = \sum_n H_z(n) e^{i(k_x+2n\pi/d)x+ik_y y} \tag{6}
\]
The Equations (5) and (6) are substituted in Equations (1) and (2), and after some algebra one obtains the eigenvalue equations for the TE and TM polarizations [37, 40]

\[
\sum_{n'} \alpha(n-n')[(k_x + 2n'\pi/d)^2 + k_y^2]E_z(n') = \frac{\omega^2}{c^2} E_z(n) \quad (7)
\]

\[
\sum_{n'} \alpha(n-n')[(k_x + 2n\pi/d)(k_x + 2n'\pi/d) + k_y^2]H_z(n') = \frac{\omega^2}{c^2} H_z(n) \quad (8)
\]

If we multiply Equations (7) and (8) by the factor \([d/(2\pi)]^2\) we obtain

\[
\sum_{n'} \alpha(n-n')[(\kappa_x + n')^2 + \kappa_y^2]E_z(n') = \Omega^2 E_z(n) \quad (9)
\]

\[
\sum_{n'} \alpha(n-n')[(\kappa_x + n)(\kappa_x + n') + \kappa_y^2]H_z(n') = \Omega^2 H_z(n) \quad (10)
\]

where we have introduced the reduced wavevectors \(\kappa_x = k_x d/2\pi\) and \(\kappa_y = k_y d/2\pi\). The reduced frequency is

\[
\Omega = \frac{\gamma d}{c}, \quad (11)
\]

where \(\gamma = \omega/2\pi\). The Equations (9) and (10) define two eigenvalue problems of the form \(Ax = \lambda x\). The eigenvalues are obtained by standard numerical techniques. It is important to note that these eigenvalues equations are independent of the period \(d\). The eigenvalues \(\Omega\) are scalable and allow us to know the band structure for any 1D-PC of the same filling fraction and dielectric contrast.

Let us consider the projected band structure of a PC whith an OM. We consider a multilayer composed of two materials with dielectric functions of \(\varepsilon_H = 6.76\) and \(\varepsilon_L = 2.1\), which are typical values of ZnS/Si [24] or porous silicon [42] multilayers. We consider a filling fraction according to the quarter-wave condition [43] of \(f = 0.36\).

Fig. 2 shows the projected band structure, where the light gray zones indicate the allowed modes and the black region represents the OM. The upper and lower limits for the OM are \(\Omega^+ = 0.32\) and \(\Omega^- = 0.29\), respectively.

In Fig. 3, we present the variation of the OM limits as a function of \(d\)

\[
\gamma^+(d) = \frac{c\Omega^+}{d} \quad (12)
\]

\[
\gamma^-(d) = \frac{c\Omega^-}{d} \quad (13)
\]
Figure 2. Photonic Band structure of an infinite multilayer. The light gray zones are the allowed frequencies and the black zone is the omnidirectional band gap.

Figure 3. Variation of the omnidirectional mirror as a function of the thickness period d. In the graph we consider the OM limits for two submirrors of period d_i and d_{i+1}, respectively.
To determine a PH with enlarged OM, we consider two or more submirrors with thickness period d_i and d_{i+1}, such that their OM can be superposable to obtain an enlarged OM in the form

$$\gamma_i^- = \gamma_{i+1}^+ \quad (14)$$

The rule to determine the thickness for the periods is obtained from Equations (11) and (14)

$$d_{i+1} = \frac{\Omega^+}{\Omega^-} d_i \quad (15)$$

The PH is the result of stacking together several submirrors, as we illustrate in Fig. 4.

3. NUMERICAL RESULTS

The procedure to design a PH with an enlarged OM of arbitrary upper and lower limits γ^+ to γ^- can be summarized in four steps:

(i) First, we consider that the upper frequency limit of the first submirror is the upper frequency limit of the PH, $\gamma_1^+ = \gamma^+$. To obtain the first submirror period we use

$$d_1 = \frac{c\Omega^+}{\gamma_1^+} \quad (16)$$

(ii) Second, we determine the following submirrors periods using the recurrence relation of Equation (15)

$$d_{i+1} = \frac{\Omega^+}{\Omega^-} d_i \quad (17)$$
(iii) Third, we calculate the frequency limits of each submirror using Equations (12) and (13)

\[
\gamma_i^+ = \frac{c\Omega^+}{d_i} \\
\gamma_i^- = \frac{c\Omega^-}{d_i}
\]

(18) (19)

(iv) Finally, we compare the lower limit of each submirror (\(\gamma_i^-\)) with the lower limit of the PH, (\(\gamma^-\)). We look for the condition where the lower limit of the submirror \(N\) (\(\gamma_N^-\)) be lower that the PH lower limit in the form

\[
\gamma_N^- < \gamma^-
\]

(20)

When we reach this condition, we take \(N\) submirrors for the PH.

Now, we apply our method to obtain a PH with an OM for entire the visible range which is defined from \(\gamma^- = 400\) THz (THz=10\(^{12}\) s\(^{-1}\)) to \(\gamma^+ = 790\) THz. We consider the same 1D-PC than in the precedent section, where the dielectric contrast is \(\varepsilon_H/\varepsilon_L = 6.76/2.1\) and the filling fraction is \(f = 0.36\). The upper and lower reduced frequency limits are \(\Omega^+ = 0.32\) and \(\Omega^- = 0.29\), respectively.

In Table 1, we present the values of the periods and the frequency limits of the OM of each submirror. We observe that with only seven submirrors is possible to obtain a complete mirror in the visible.

The reflection of the PH is shown in Fig. 5. Each submirror is composed by 12 unit cells. In panels (a), (b) and (c) we present the reflectivity for an incident angle of 0\(^\circ\), 45\(^\circ\) and 85\(^\circ\), respectively. We present with solid and dashed lines the results for TE and TM polarizations. The visible region is illustrated with a light gray zone.

<table>
<thead>
<tr>
<th>i</th>
<th>(d_i) (nm)</th>
<th>(\gamma_i^+) (THz)</th>
<th>(\gamma_i^-) (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>121.52</td>
<td>790.00</td>
<td>715.94</td>
</tr>
<tr>
<td>2</td>
<td>134.09</td>
<td>715.94</td>
<td>648.82</td>
</tr>
<tr>
<td>3</td>
<td>147.96</td>
<td>648.82</td>
<td>587.99</td>
</tr>
<tr>
<td>4</td>
<td>163.27</td>
<td>587.99</td>
<td>532.87</td>
</tr>
<tr>
<td>5</td>
<td>180.16</td>
<td>532.87</td>
<td>482.91</td>
</tr>
<tr>
<td>6</td>
<td>198.79</td>
<td>482.91</td>
<td>437.64</td>
</tr>
<tr>
<td>7</td>
<td>219.36</td>
<td>437.64</td>
<td>396.61</td>
</tr>
</tbody>
</table>

Table 1. Table of the periods and OM limits for each submirror.
4. DISCUSSION

We have designed an all-dielectric reflector for TE and TM polarized light creating an omnidirectional reflection for any angle of incidence and any polarizations. The heterostructure reflector is composed of several submirrors in a manner that the heterostructure is configured such that

(i) a range of frequencies exists with a PBG for the normal incidence,
(ii) a range of frequencies with a PBG for electromagnetic energy incident along a direction approximately 90° from the normal direction.
(iii) the range of frequency of the PBG need to be common to both cases.

It is necessary to consider that the range of the PBG for the normal incidence is wider than in the case of an incident angle of 90°, as it can be observed in Fig. 5.

Figure 5. Reflectance of a Photonic heterostructure composed by seven submirrors. Each submirror have 12 unit cells. We present with solid and dashed lines the results for the TE and TM polarizations. In panels (a), (b) and (c) we have the reflectance for the incidence angle of $\theta = 0^\circ$, $\theta = 45^\circ$ and $\theta = 85^\circ$, respectively.
5. CONCLUSIONS

We present a simple method for designing a photonic heterostructure with an omnidirectional mirror as large as desired. The photonic heterostructure is made by combining several submirrors, whose are determined by using an analytical expression. We apply our procedure to obtain a photonic heterostructure with an omnidirectional mirror for the whole visible range.

6. ACKNOWLEDGES

PCG thanks the Optical Academy of the Department for Physics Research of the Sonora University for a temporary contract as Research Associate. RAG received a fellowship provided by the CONACYT project CB-2008-104151.

REFERENCES

41. Ramos-Mendieta, F. and P. Halevi, “Electromagnetic surface...
