Progress
In
Electromagnetics
Research
ELECTROMAGNETIC WAVES PIER 111

Progress In Electromagnetics Research

Chief Editor: Weng Cho Chew

EMW Publishing
Cambridge, Massachusetts, USA
CONTENTS

MODAL ANALYSIS OF BI-ISOTROPIC H-GUIDES
J. R. Canto, C. R. Paiva, and A. M. Barbosa

1. Introduction ... 1
2. Dispersion Diagrams of the Elementary Structures 3
3. The Bi-isotropic H-guide 10
4. Concluding Remarks 17

Appendix A. Mode-matching Coefficients 18

TUNABLE AND SWITCHABLE BANDPASS FILTERS USING SLOT-LINE RESONATORS

1. Introduction ... 26
2. Centrally-loaded Slot-line Resonator 27
3. Slot-line Tunable Bandpass Filter 32
4. Slot-line Switchable Bandpass Filter 37
5. Conclusion ... 38

A NOVEL SPHERICAL-WAVE THREE-DIMENSIONAL IMAGING ALGORITHM FOR MICROWAVE CYLINDRICAL SCANNING GEOMETRIES
W. X. Tan, W. Hong, Y. P. Wang, and Y. R. Wu

1. Introduction ... 43
2. Spherical-wave Three-dimensional Imagery Reconstruction .. 45
3. Simulation Results 56
4. Conclusion ... 64

Appendix A. Solution of the Integral Using Fourier Transform .. 65

EXPERIMENTAL INVESTIGATION AND OPTIMIZATION OF PERMANENT MAGNET MOTOR BASED ON COUPLING BOUNDARY ELEMENT METHOD WITH PERMEANCES NETWORK
S. Touati, R. Ibtiouen, O. Touhami, and A. Djerdir

1. Introduction ... 72
2. Structure of Out-rotor Permanent Magnet Motor 73
3 Application of Boundary Integral Method 74
4 Multiobjective Optimization Design Using Genetic Algorithm 83
5 Conclusion ... 87
Appendix A. Machine Parameters 87

EXPERIMENTAL STUDY ON A FLANGED PARALLEL-PLATE DIELECTRIC WAVEGUIDE PROBE FOR DETECTION OF BURIED INCLUSIONS
H. Zhang, S. Y. Tan, and H. S. Tan
1 Introduction ... 91
2 Review of Theoretical Formulation 92
3 Methodology .. 94
4 Experimental Results and Discussions 94
5 Conclusion .. 102

ONE-DIMENSIONAL PHOTONIC HETEROSTRUCTURE WITH BROADBAND OMNIDIRECTIONAL REFLECTION
D. Moctezuma-Enriquez and E. Urrutia-Banuelos
1 Introduction ... 105
2 Theory ... 106
3 Numerical Results .. 110
4 Discussion .. 112
5 Conclusions ... 113

FAST COMPUTATION OF THE FORWARD SOLUTION IN CONTROLLED-SOURCE ELECTROMAGNETIC SOUNDING PROBLEMS
M. Parise
1 Introduction ... 119
2 Formulation ... 121
3 Results and Discussion ... 127
4 Conclusion ... 134
SETUP AND RESULTS OF PYRAMIDAL MICROWAVE
ABSORBERS USING RICE HUSKS

H. Norikman, F. Malek, M. Ahmed, F. H. Wee, P. J. Soh
A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib

1 Introduction .. 142
2 Collection of the Rice Husks 143
3 Microwave Absorber Fabrication 144
4 Reflection Loss Measurements 146
5 Results and Discussions 149
6 Comparison between the Rice Husks Microwave Absorbers
 and the Conventional Microwave Absorbers 156
7 Conclusion and Future Work 157

DUAL-BAND EQUAL/UNEQUAL WILKINSON POWER
DIVIDERS BASED ON COUPLED-LINE SECTION WITH
SHORT-CIRCUITED STUB

B. Li, X. Wu, N. Yang, and W. Wu

1 Introduction .. 164
2 Structure and Theory 165
3 Dual-band Equal Wilkinson Power Divider 169
4 Dual-band Unequal Wilkinson Power Divider 172
5 Conclusion .. 175

A NOVEL BANDWIDTH ENHANCEMENT TECHNIQUE
FOR X-BAND RF MEMS ACTUATED RECONFIGURA-
BLE REFLECTARRAY

Y. Raedi, S. Nikmehr, and A. Poorziad

1 Introduction .. 180
2 Array Structure ... 183
3 Bandwidth Enhancement 186
4 RF MEMS Switches Modeling along with Reflectarray ... 189
5 Conclusions .. 191

LOW LOSS METAL DIPLEXER AND COMBINER
BASED ON A PHOTONIC BAND GAP CHANNEL-
DROP FILTER AT 109 GHz

D. Y. Shchegolkov, C. E. Heath, and E. I. Simakov

1 Introduction .. 198
2 Design of the Channel-drop Filter 199
PROGRESS IN ELECTROMAGNETICS RESEARCH

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Fabrication and Testing of the Clamped Device</td>
<td>204</td>
</tr>
<tr>
<td>4 Fabrication and Testing of the Electroformed Device</td>
<td>206</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>209</td>
</tr>
<tr>
<td>PROPERTIES OF PHASE SHIFT DEFECTS IN ONE-DIMENSIONAL RUGATE PHOTONIC STRUCTURES</td>
<td></td>
</tr>
<tr>
<td>Y. Y. Liu and Z. Lu</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>213</td>
</tr>
<tr>
<td>2 The Model and Methods</td>
<td>214</td>
</tr>
<tr>
<td>3 Numerical Results and Discussion</td>
<td>219</td>
</tr>
<tr>
<td>4 Conclusion</td>
<td>225</td>
</tr>
<tr>
<td>PO/MEC-BASED SCATTERING MODEL FOR COMPLEX OBJECTS ON A SEA SURFACE</td>
<td></td>
</tr>
<tr>
<td>A. Baussard, M. Rochdi, and A. Khenchaf</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>229</td>
</tr>
<tr>
<td>2 Scattered Field Modeling</td>
<td>231</td>
</tr>
<tr>
<td>3 RCS of Maritime Scenes</td>
<td>238</td>
</tr>
<tr>
<td>4 SAR Images of Maritime Scenes</td>
<td>244</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>248</td>
</tr>
<tr>
<td>ANALYSIS OF A CIRCULAR WAVEGUIDE LOADED WITH DIELECTRIC AND METAL DISCS</td>
<td></td>
</tr>
<tr>
<td>V. Kesari and J. P. Keshari</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>254</td>
</tr>
<tr>
<td>2 Analysis for Beam-absent Dispersion Relation</td>
<td>256</td>
</tr>
<tr>
<td>3 Results and Discussion</td>
<td>259</td>
</tr>
<tr>
<td>4 Conclusion</td>
<td>265</td>
</tr>
<tr>
<td>ERROR CONTROL OF THE VECTORIAL NONDIRECTIVE STABLE PLANE WAVE MULTILEVEL FAST MULTIPOLE ALGORITHM</td>
<td></td>
</tr>
<tr>
<td>I. Bogaert, J. Peeters, and D. De Zutter</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>271</td>
</tr>
<tr>
<td>2 The Vectorial Multilevel Fast Multipole Algorithm</td>
<td>275</td>
</tr>
<tr>
<td>3 Cancellation in the EFIE</td>
<td>276</td>
</tr>
<tr>
<td>4 Determining L for the Dyadic Green Functions</td>
<td>279</td>
</tr>
<tr>
<td>5 Numerical Results</td>
<td>282</td>
</tr>
</tbody>
</table>
Experimental Dynamical Evolution of the Brillouin Precursor for Broadband Wireless Communication Through Vegetation

A. V. Alejos, M. Dawood, and L. Medina

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>2</td>
<td>Experimental Data Collection Method</td>
<td>293</td>
</tr>
<tr>
<td>3</td>
<td>Experimental Results</td>
<td>297</td>
</tr>
<tr>
<td>4</td>
<td>Evolution of Sequence of Pulses</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>Dynamical Evolution of Power Spectrum Density and Bit Energy</td>
<td>303</td>
</tr>
<tr>
<td>6</td>
<td>Near-optimal Waveform for Bit Sequences</td>
<td>304</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions</td>
<td>305</td>
</tr>
</tbody>
</table>

Microwave Noise Field Behaves Like White Light

J. Polivka, P. Fiala, and J. Machac

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>2</td>
<td>A Basic Description of Light Active Elements Used in Optics</td>
<td>314</td>
</tr>
<tr>
<td>3</td>
<td>Theory of Lighting, from the Electromagnetic Point of View</td>
<td>316</td>
</tr>
<tr>
<td>4</td>
<td>Intensity of Radiation</td>
<td>319</td>
</tr>
<tr>
<td>5</td>
<td>Noise Generators</td>
<td>320</td>
</tr>
<tr>
<td>6</td>
<td>Noise Radiators and Antennas with Radiometers</td>
<td>320</td>
</tr>
<tr>
<td>7</td>
<td>Noise Propagation, Dispersion, and Attenuation</td>
<td>322</td>
</tr>
<tr>
<td>8</td>
<td>Scene Illumination and Observation</td>
<td>323</td>
</tr>
<tr>
<td>9</td>
<td>Similarities between Lighting and Microwave Noise Fields, Experiments</td>
<td>323</td>
</tr>
<tr>
<td>10</td>
<td>Conclusion</td>
<td>327</td>
</tr>
</tbody>
</table>

An FFT-Accelerated FDTD Scheme with Exact Absorbing Conditions for Characterizing Axially Symmetric Resonant Structures

K. Sirenko, V. Pazynin, Y. Sirenko, and H. Bagci

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>332</td>
</tr>
<tr>
<td>2</td>
<td>Formulation</td>
<td>334</td>
</tr>
<tr>
<td>3</td>
<td>Numerical Results</td>
<td>358</td>
</tr>
</tbody>
</table>
4 Conclusions and Future Research Directions 361

SELF-CALIBRATION FOR FAULT OR OBSTACLE CORRECTION IN CONTINUALLY ROTATING ARRAY ANTENNAS
R. G. Ayestarán, J. A. López-Fernández, and F. Las-Heras
1 Introduction 365
2 SVR-modeling of the Array Antenna 367
3 Near Field Sampling and Far Field Calculation 369
4 Model Adaptation Algorithm 370
5 Synthesis of Corrected Feeding Values 371
6 Overall System 372
7 Results 374
8 Conclusions 376

A STUDY OF AN INVERSION MODEL FOR SEA ICE THICKNESS RETRIEVAL IN ROSS ISLAND, ANTARCTICA
Y. J. Lee, W. K. Lim, and H. T. Ewe
1 Introduction 382
2 Radiative Transfer Inverse Scattering Model (RTISM) 384
3 Ground Truth Measurement 389
4 Multiyear Measurement and Retrieval Results 391
5 Conclusion and Future Work 403

ACHIEVING LARGE EFFECTIVE APERTURE ANTENNA WITH SMALL VOLUME BASED ON COORDINATE TRANSFORMATION
D. Ye, S. Xi, H. Chen, J. Huangfu, and L. Ran
1 Introduction 407
2 Transformation Procedure for Realizing Large Aperture Antenna from Small Reflectors 408
3 Antenna Created with Linear Transformations 409
4 Antenna Created with Nonlinear Transformations 413
5 Conclusion 415
EVANESCENT-MODE SUBSTRATE INTEGRATED WAVEGUIDE (SIW) FILTERS IMPLEMENTED WITH COMPLEMENTARY SPLIT RING RESONATORS

Q.-L. Zhang, W.-Y. Yin, S. He, and L.-S. Wu

1 Introduction .. 420
2 Analysis and Design .. 421
3 Results and Discussions 426
4 Conclusion .. 429

MICROWAVE PROPERTIES OF A HIGH-TEMPERATURE SUPERCONDUCTOR AND FERROMAGNETIC BILAYER STRUCTURE

C.-J. Wu and Y.-L. Chen

1 Introduction .. 434
2 Basic Equations .. 436
3 Numerical Results and Discussion 439
4 Conclusion .. 443

EXPERIMENTAL BREAST TUMOR DETECTION USING NN-BASED UWB IMAGING

S. A. Alshehri, S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah R. Mahmood and Z. Awang

1 Introduction .. 448
2 System Scenario ... 449
3 Results .. 457
4 Conclusion .. 462

DESIGN OF SUBWAVELENGTH TUNABLE AND STEERABLE FABRY-PEROT/LEAKY WAVE ANTENNAS

F. Costa and A. Monorchio

1 Introduction .. 467
2 Formulation .. 468
3 Tunable and Steerable Antenna Design 472
4 Finite Size Antenna ... 475
5 Conclusion .. 478