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ANTENNA ARRAYS

W.-B. Wang †

School of Electric Information
Xihua University, Chengdu, Sichuan 610039, China

Q.-Y. Feng and D. Liu

School of Information Science & Technology
Southwest Jiaotong University, Chengdu, Sichuan 610031, China

Abstract—To deal with pattern synthesis of antenna arrays, a
chaotic particle swarm optimization (CPSO) is presented to avoid the
premature convergence. By fusing with the ergodic and stochastic
chaos, the novel algorithm explores the global optimum with the
comprehensive learning strategy. The chaotic searching region can
be adjusted adaptively. To evaluate the performance of CPSO,
several representative benchmark functions are minimized using
various optimization algorithms. Numerical results demonstrate that
the proposed approach improves the performance of the algorithm
significantly, in terms of both the convergence speed and exploration
ability. Moreover, CPSO was applied to array synthesis examples,
including the equally spaced linear array, unequally spaced linear
array and conformal array, compared with other optimization methods.
Experimental results show its high performance in the pattern
synthesis with low side lobe, multi-nulls and shaped beam.

1. INTRODUCTION

The purpose of antenna array synthesis is to find appropriate excitation
vector and layout of the array that produces the radiation pattern
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which is closest to the desired pattern. Antenna array synthesis plays
a very important role in communication systems [1–7].

Various techniques have been developed to array synthesis. Classic
techniques such as the Dolph-Chebyshev and Taylor methods have
many practical difficulties in the array design especially if there are
some restricted conditions [3]. Moreover, synthesis of antenna arrays
also imposes tough challenges that mainly come from the nonlinear
and non-convex dependency of the array factor to positions, excitation
phases and amplitude of elements [7]. The constraints placed on
steering nulls also increase the difficulty of synthesis. Furthermore, it
is a tough task in the synthesis of conformal arrays which is conformal
to a curved surface. New far field pattern behaviors emerge, and some
traditional linear and planar array synthesis methods are not valid.

In recent years, several new optimization techniques have emerged.
The evolutionary algorithms (EAs) for array synthesis have been
extensively studied. Several global optimization algorithms such
as differential evolution (DE) [1, 7], genetic algorithm (GA) [4, 6],
simulated annealing (SA) [8], ant colony optimization (ACO) [9],
particle swarm optimization (PSO) [10–14] are used in antenna array
pattern. However, these methods present certain drawbacks with the
possibility of premature convergence to a local optimum.

In this paper, a novel chaotic PSO algorithm (CPSO) is proposed.
Based on the ergodicity, regularity and pseudo-randomness of the
chaotic variable, chaotic search is used to explore better solutions.
In order to verify its effectiveness and versatility, CPSO has been
first applied to classical benchmark functions and then used for the
optimization of antenna array synthesis.

This paper is organized as follows: Section 2 describes the
principle of CPSO and its simulations on classical benchmark
functions. Array synthesis problems are then addressed in Section 3,
and the numerical results are compared with those obtained in
literatures. Finally, the conclusions are discussed in Section 4.

2. PRINCIPLE OF CPSO

2.1. Basic Particle Swarm Optimization

Inspired by the social behaviors of animal, bird flocking and fishing,
PSO was developed by Kennedy and Eberhat [16]. The particle is
endowed with two factors: velocity and position which can be regarded
as the potential solution in the D dimension problem space. In basic
PSO, they can be updated by following formulas:

vid(t + 1) = wvid(t)+c1r1d(pid(t)−xid(t))+c2r2d(pgd(t)−xid(t)) (1)
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xid(t + 1) = xid(t) + vid(t + 1) (2)

where i = 1, . . . , N , d = 1, . . . , D, N is the number of particles. w is
the inertia weight factor to control the exploration and exploitation.
r1d and r2d are two random numbers within the range [0, 1]. vid(t) and
xid(t) are the velocity and position of the current particle i at time
step t in the dth-dimensional search space respectively. When vid(t)
and xid(t) are beyond the boundary, the solution may be illegal. So,
the treatment of boundaries in the PSO method is important in order
to prevent the swarm from explosion [28]. In many practical problems,
the search range xid is in [Xmin, Xmax]D. vid should be clamped to a
maximum magnitude Vmax. pi is the previous best position of particle i
which is also called “personal best”, and its dth-dimensional part is pid.
The “global best” pg is the best position found in the whole particles,
and its dth-dimensional part is pgd. c1, c2 are the acceleration constants
which change the velocity of a particle towards the pi and pg.

2.2. Modification Techniques in CPSO

The basic PSO uses pg as neighborhood topology. Each particle learns
from its pi and pg. Restricting the social learning part to pg can make
basic PSO converge quickly. However, because all particles in the
swarm learn from the pg even if the current pg is far from the global
optimum, particles may easily be attracted to the area and trapped
in a local optimum. Furthermore, the fitness value of a particle is
determined by all dimensions. A particle that has discovered the region
corresponding to the global optimum in some dimensions may have a
low fitness value because of the poor solutions in other dimensions [17].

In order to acquire more beneficial information from the entire
swarm, we define pc as “comprehensive best position”.

pc =
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where i = 1, . . . , N . Thus Equation (1) is modified as

vid(t+1) = wvid(t)+ c1r1d(pid(t)−xid(t))+ c2r2d(pcd(t)−xid(t)) (4)

where pcd is the dth-dimensional part of pc. By using pc instead of pg,
all particles’ pi can potentially be used as the exemplars to guide their
flying direction. The comprehensive learning strategy yields a larger
potential search space than that of the basic PSO. On the other hand,
a particle can learn from pg, as well as its personal best and the other
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particles’ best, so that the particle can learn from particle itself, the
elite and other particles. The strategy can increase the initial diversity
and enable the swarm to overcome premature convergence problem.

Basic PSO has shown some important advances by providing high
speed of convergence in specific problems. However it does exhibit
some shortages [18]. During the process of evolution, sometimes
particles lose their abilities of exploration and will be stagnated. When
some particles’ velocity is be close to zero, other particles will quickly
fly into the region near the inactive particles’ position that guided by
pi and pg. Because of the particles’ randomicity in initialization and
evolution process, the updating sometimes looks aimless. As a result,
when pg is trapped in a local optimum, the whole swarm becomes
premature convergence, and the exploration performance will not be
improved.

Optimization algorithms based on the chaos theory are stochastic
search methodologies that differ from any of the existing evolutionary
algorithms. Due to the non-repetition of chaos, it can carry out overall
exploration at higher velocities than stochastic and ergodic searches
that depend on probabilities [19]. Chaotic PSO can be divided into two
types. In the first type, chaos is embedded into the velocity updating
equation of PSO. In [18], c1 and c2 are generated from the iterations of
a chaotic map instead of using the rand function. In [20], a chaotic map
is used to determine the value of w during iterations. In the second
type, chaotic search is fused with the procedures of PSO. This type is
a kind of multi-phase optimization technique that chaotic optimization
and PSO can switch to each other according to certain conditions [21].

Therefore, this paper provides a new strategy, which not
only introduces chaotic mapping with certainty, ergodicity and
stochastic property into PSO algorithm, but also proposes multi-phase
optimization integrated by chaotic search and PSO evolution. The
multi-phase optimization of chaotic PSO includes: vid and xid are
updated by basic PSO with comprehensive learning strategy. If the
swarm is stagnated, chaotic disturbance would be introduced.

Here, variance σ2 demonstrates the converge degree of all particles.

σ2 =
N∑

i=1

[(fi − favg)/f ]2 (5)

f = max{1, max{|fi − favg|}} (6)
where fi is the fitness of the ith particle; favg is the average fitness
value; f is the factor of fitness value. The bigger σ2 is, the broader
ithe particles will spread. Otherwise, they will almost converge.

The chaotic sequence can be generated by the logistic map
introduced by Robert May in 1976. It is often cited as an example of
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how complex behavior can arise from a simple dynamic system without
any stochastic disturbance [22]. The equation is the following

yid(t + 1) = µyid(t)(1− yid(t)) (7)

where yid(t) ∈ (0, 1), i = 1, . . . , N , d = 1, . . . , D. µ is usually set to 4
to obtain ergodicity of yid(t + 1) within (0, 1). When the initial value
yid(0) /∈ {0.25, 0.5, 0.75}, using Equation (7) we can obtain chaotic
sequences.

In order to increase the population diversity and prevent
premature convergence, we add adaptively chaotic disturbance upon
pc at the time of stagnation. Thus, pc is modified as p′c.

p′cd(t + 1) = pcd(t) + Rid(2yid(t)− 1) (8)

where p′cd is the dth dimension part of p′c, and pcd is the dth dimension
part of pc. The chaotic searching radius Rid is defined as

Rid = β |pcd(t)− pid(t)| (9)

where β is the region scale factor. Because yid ∈ (0, 1), the second part
of Equation (8) is in the range of (−|Rid|, |Rid|) that would restrict
the searching area around pc. In addition, the searching range can
be adaptively adjusted by the distance between pi and pc. If pc is
surrounded with the previous best positions pi, it means that a good
region may have been found, and it is reasonable to search elaborately
in a small area. On the contrary, if pi is far from pc, this probably
suggests that a good area has not yet been found. For better solution,
searching region should be enlarged [27].

Thus in CPSO, the new position can be expressed as

vid(t+1) = wvid(t)+c1r1d(pid(t)−xid(t))+c2r2d(p′cd(t)−xid(t)) (10)

Different from Equation (1), pg is replaced by p′c at the time of
stagnation when σ2 is less than the stagnation factor ξ. Chaotic search
is restricted into a small range to obtain high performance in local
exploration. Additionally, the algorithm keeps a dynamic balance
between global and local searches due to its adaptive mechanism.
With the new updating rule, different exemplars are used in different
dimensions to explore a larger search space than the basic PSO. In
addition, chaotic disturbance is embedded in different dimensions to
maintain the diversity which plays an important role in avoiding early
convergence.

2.3. Simulation of CPSO to Benchmark Functions

To verify its effectiveness, CPSO has been applied to classical
benchmark functions. All simulations are conducted in a Windows 7
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Professional OS using 12-core processors with Intel Xeon(R), 3.33 GHz,
72GB RAM, and the codes were implemented in Matlab 7.10.

In this section, four benchmark functions including unimodal and
multimodal functions in [17] are employed. Test functions, search range
[Xmin, Xmax] and optimal goal for functions are listed in Table 1.

Table 1. Benchmark functions.

Function Name Search Range Goal Dimension
Sphere [−100, 100] 0.01 30

Rastrigin [−5.12, 5.12] 100 30
Ackley [−32, 32] 0.1 30

Griewank [−600, 600] 0.1 30

Experiments were carried out with 3000 iterations for the
population size of 50. All experiments were run 30 times. c1 = c2 = 2,
w is linearly decreased from 0.9 to 0.4 during the iterations. Region
scale factor β is set to 0.3, and stagnation factor ξ is equal to 0.15.

The initiation of CPSO is as follows. xid ∈ [0, Xmax], vid ∈
[−Vmax/2, Vmax/2], where the maximum velocity Vmax = 0.5(Xmax −
Xmin).

The reflecting boundary conditions discussed in [27, 28] are used
to ensure particles to search inside the solution space. During the
iterations, if vid > Vmax, then vid = sign(xid)Vmax. If xid > Xmax, then
xid = 2Xmax − xid, and if xid < Xmin, then xid = 2Xmin − xid.

The performance of CPSO is compared with inertia weight PSO
(WPSO) [23], fully informed PSO (FIPSO) [24], perturbation PSO
(PPSO) [25]. The simulation results such as the average iteration time,
success rate, average best fitness value, standard variation are shown
in Table 2. The average simulation time for different algorithms to
reach the optimal goal is also obtained. The algorithm is thought to
fail in evolution if the fitness cannot reach the goal after the maximum
iteration time. The best results are listed in bold in Table 2. In the
form of logarithm with base 10, the convergence of mean best fitness
values of benchmark functions is shown in Figure 1.

From Table 2, we can see that the CPSO obviously perform better
than other three algorithms. It converges successfully and quickly in all
functions. CPSO can achieve better evolution results after maximum
iteration except in the multimodal function Greiwank. The average
best fitness value achieved by FIPSO in Greiwank is better than other
algorithms, though convergence speed of FIPSO in Greiwank is the
slowest. It is probably due to its strategy of fully informed goniometry
which can obtain better results with slow evolutionary progress. From
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Table 2. Simulation results on benchmark functions.

Benchmark functions Applied algorithm Average iterations Success rate (%)

Sphere

WPSO 736 1

FIPSO 553 1

PPSO 469 1

CPSO 346 1

Rastrigin

WPSO 420 1

FIPSO 303 1

PPSO 346 1

CPSO 292 1

Ackley

WPSO 617 0.95

FIPSO 542 1

PPSO 921 1

CPSO 507 1

Griwank

WPSO 605 1

FIPSO 710 1

PPSO 455 1

CPSO 420 1

Benchmark functions Average value Standard variation Average time (ms)

Sphere

6.47e-29 7.23e-29 1542

2.45e-34 4.56e-33 1769

2.32e-30 1.03e-30 1593

5.19e-36 5.47e-36 1301

Rastrigin

66.23 32.59 1357

74.12 16.64 1415

91.86 36.56 1246

61.63 15.52 1004

Ackley

4.3e-15 1.2e-15 1271

3.15e-14 2.31e-14 1647

4.21e-8 1.34e-8 1456

7.35e-17 4.22e-17 1129

Griwank

7.69e-3 8.47e-3 1216

1.03e-6 1.98e-6 1465

0.04 0.02 1097

3.51e-4 1.73e-4 986

Figure 1, in Sphere, Rastrigin and Ackley, CPSO converges fastest. In
Griewank, CPSO converges quickly. It is obvious that CPSO performs
better than WPSO and PPSO due to the adaptive mechanism of the
chaotic search and a good balance of exploration and exploitation.
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(a) (b)

(c) (d)

Figure 1. Convergence of mean fitness for benchmark functions: (a)
Sphere. (b) Rastrigin. (c) Ackley. (d) Griewank.

3. ARRAY PATTERN SYNTHESIS USING CPSO

The capabilities and versatility of the proposed CPSO algorithm will
be assessed by presenting three different array types: an equally spaced
linear array, an unequally spaced linear array and a conformal array.

Parameters setting of CPSO is the same as in the previous
simulation in which the parameters are testified effectively. Note that
the parameter D is different according to the number of array elements.

To reduce side lobe, steer nulls and shape beams, we define the
following objective function in array synthesis.

f = α1 |PSLLc − PSLLd|+ α2

θNull∑
|MNULLc −MNULLd|

+α3

θNull∑
NULLs + α4 |BWc −BWd|+ α5 |Bc −Bd| (11)
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where PSLLc is the calculated peak side lobe level, and PSLLd is the
desired peak side lobe level. θNull is the desired null position. MNULLc

denotes the calculated maximum null depth level at prescribed nulls.
MNULLd is the desired maximum null depth level. NULLs is the
variance value of null depth level at prescribed nulls. BWc and BWd

are the calculated and desired beam widths. Bc and Bd are the
calculated beam and desired beams from θB1 to θB2. Weighting factors
α1 to α5 can be tuned in different array pattern synthesis.

Synthesis times depend on the computing amount or complexity.
In the same hardware platform, the computing amount mainly includes
two parts: the time cost when updating the position and velocity
in PSO, and the time consumption using the position to compute
fitness functions. As for array pattern synthesis, the latter part costs
much more computing time than the former one. So, the number of
fitness function evaluations can be used to indicate synthesis time.
In this paper, the number of fitness function evaluations for different
algorithms is the same, which means that their synthesis times are
almost equivalent. Thus, the results of synthesized pattern can be
used to compare the capability of different algorithms.

3.1. Equally Spaced Linear Array

Basically, if mutual coupling effects are neglected, and dependence
on azimuth angle ϕ with respect to X-axis is omitted, the far field
radiation pattern of a Z-directed linear array at a certain direction
given by the elevation angle θ can be written as [10]

FF (θ) = EP (θ) ·AF (θ) (12)

where EP (θ) is the element pattern. For a linear array consisting of
symmetric 2K elements, the array factor AF is given by

AF (I, x, ϕ, θ) =
K∑

n=−K

Inej( 2π
λ

xn sin θ+ϕn) (13)

In the synthesis of a linear array which is equally spaced with
uniform excitation phase (ϕn = 0 for all elements), Equation (13)
becomes

AF (I, θ) =
2K∑

n=1

Ine
j
(

2π(n−1)d
λ

sin θ
)

(14)

where d is the equal inter-element spacing distance. To validate the
effectiveness of CPSO, we first discuss a 20 elements half-wavelength-
spaced linear array [11]. The excitation amplitude is symmetric with
respect to the center of the linear array. Only 10 amplitudes are to be



182 Wang, Feng, and Liu

-100 -80 -60 -40 -20 0 20 40 60 80 100

q (deg)

N
o
rm

a
liz

e
d
 A

F
 (

d
B

)

0

-20

-40

-60

-80

-100

-120

CPSO

FIPSO

PPSO

Figure 2. Pattern of 20-element array with equally space.

Table 3. Performance comparisons of different algorithms.

Algorithm PSLLc (dB)
MNULLc@θNull (dB)

20◦ 30◦ 40◦ 50◦ 60◦

FIPSO −20.58 −97.4 −97.73 −97 −104.14 −96.89

PPSO −16.84 −106.6 −105.3 −99.44 −97.83 −101.1

CPSO −21.95 −109.6 −96.17 −114.3 −105.9 −103.2

optimized. The array is designed with lower side lobe level (SLL)
suppression in the region [−100◦, 100◦], with PSLLd −15 dB and
prescribed nulls at 20◦, 30◦, 40◦, 50◦ and 60◦ with MNULLd −95 dB.

Here, α1 = 0.8, α2 = 1, α3 = 0.2 and α4 = α5 = 0.
Contrast to FIPSO [24] and PPSO [25], the array pattern obtained

by CPSO is shown in Figure 2. Table 3 lists the performance
comparisons of different algorithms. The computed amplitudes of
elements optimized by CPSO are shown in Table 4. Table 5 illustrates
the average synthesis times using CPSO after maximum iterations.

Figure 2 illustrates that the results optimized by CPSO can satisfy
the requirements. The performance can be observed in detail from
Table 3 that the MNULLc at θNull obtained by CPSO prevails against
both FIPSO and PPSO at 20◦, 40◦, 50◦ and 60◦ except at 30◦. Note
that the returned PSLLc of CPSO is much better than those of FIPSO
and PPSO. As a whole, the CPSO algorithm can easily achieve the
optimization goal. From Table 3, it is observed that the suppression
of prescribed nulls is obtained by CPSO as well as other optimization
methods, and the SLL achieved by CPSO is 5.11 dB less than that
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Table 4. Computed amplitude optimized by CPSO.

Number 1/20 2/19 3/18 4/17 5/16
Amplitude 0.1121 0.4275 0.2342 0.4392 0.6191
Number 6/15 7/14 8/13 9/12 10/11

Amplitude 0.6593 0.6374 0.8430 0.9444 0.9992

Table 5. Average synthesis times.

Synthesis examples Algorithm (minutes)

Equally arrays CPSO (21.39) FIPSO (24.41) PPSO (23.72)

Unequally arrays CPSO (27.29)

Conformal arrays CPSO (36.18)

of PPSO and 1.37 dB less than that of FIPSO, which verifies the
advantage of the proposed algorithm.

From Table 5, the average synthesis times spending by CPSO
and other algorithms are at the same level. The average synthesis
times spending by CPSO is smaller than those of other two algorithms.
Moreover, it is obvious that the computing times using the particles’
position to compute fitness functions in array synthesis are much more
than those in benchmark function simulations. These results support
what have been discussed above.

3.2. Synthesis of Unequally Spaced Linear Array

Compared with the equally spaced array, unequally spaced array
enables lower SLL and reduced number of elements. Furthermore, a
low SLL design can be obtained by using uniform amplitude excitation
of the unequally spaced array to reduce system cost and difficulties in
designing feeding network [7]. If we further assume uniform excitation
of phase and amplitude (In = 1 and ϕn = 0 for all elements), for the
synthesis of a position-only and unequally spaced array with symmetric
2K-element, the array factor is [13]

AF (x, θ) = 2
K∑

n=1

ej( 2π
λ

xn sin θ) (15)

In the second example, a 32-element array at the direction of 9◦
with the desired null level at −60 dB is considered. The desired beam
width is set to 7.1◦ ± 14% [13].

Here, α1 = 0.3, α2 = 0.5, α3 = 0.1, α4 = 0.5 and α5 = 0.
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Figure 3. Pattern of 32-element array with unequally space.

Table 6. Geometry of the 32-element array.

Number 1 2 3 4 5 6 7 8

Position 0.499 0.510 0.493 0.592 0.477 0.768 0.459 0.397

Number 9 10 11 12 13 14 15 16

Position 0.235 0.384 0.035 0.296 0.122 0.206 0.766 0.036

Figure 3 presents the array pattern optimized by CPSO. The
normalized array geometry is given in Table 6. The average synthesis
time using CPSO after maximum iterations is shown in Table 5.

In Figure 3, PSLLc found by CPSO is −23.17 dB, while that in [13]
was −22.75 dB and in [26] was −18.80 dB. Compared to −60 dB in [13]
and −62.12 dB in [26], the null level at 9◦ found by CPSO is −63.16 dB.

3.3. Synthesis of Conformal Array

In [8] and [15], M ×K (8× 8 in those papers) elements are uniformly
spaced by λ/2 and located on a cylindrical surface with radius τ = 5λ
and height h = (K−1)λ/2. M and K are the number of elements in the
Φ- and Z-directions. The far-field radiation pattern of the cylindrical
array can be computed as

FF (I, χ, θ,Φ) =
K∑

k=1

M∑

m=1

[
Imk · EP (θ, Φ− Φm)

·ej{χmk+(2π
λ )(xmk sin θ cosΦ+ymk sin θ sinΦ+zmk cos θ)}

]
(16)
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where χ is the excitation phase, and its mkth part is χmk. Φ is the
element’s azimuth position, and its mth-column part in array is Φm.
Contrary to linear and planar arrays, the element patterns and array
factor are not separable for conformal arrays [29]. Each element is
towards a different direction. Therefore, EP (θ, Φ) is expressed as

EP (θ, Φ) = sin θ sin Φ (17)

The positions of the mkth element in the conformal array are



xmk = τ cos Φm

ymk = τ sinΦm

zmk = −h
2 + (k − 1)λ

2

(18)

Range from −Φmax to Φmax, Φm can be given by

Φm = −(M − 1) arcsin
(

λ

4τ

)
+ 2(m− 1) arcsin

(
λ

4τ

)
(19)

Now the statement of the current problems is simply expressed.
Thus our goal is to use the PSO algorithm to adjust the positions or
amplitude for the array elements that can result in an array beam with
minimum SLL and nulls at specific directions.

In this case, the synthesis of a 3D pattern using a conformal array
with 8 × 8 elements is addressed. A simulated annealing technique
(SA) [8] and linear programming procedure (LP) [15] have been
adopted to solve this example. The desired pattern mask has a radar-
shaped beam with a cosecant square elevation pattern from 100◦ to

θ (deg)

N
o
rm

a
liz

e
d
 A

F
 (

d
B

)

0 20 40 60 80 100 120 140 160 180

0

-10

-20

-30

-40

-50

-60

-70

SA

LP

CPSO

(a) (b)

Figure 4. (a) Geometry of the 8 × 8-elements cylindrical array. (b)
Radiation pattern in Φ = 0 plane.
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140◦. The SLL outside the shaped beam region should remain below
−25 dB.

Here, α1 = 0.4, α2 = 0, α3 = 0, α4 = 0 and α5 = 0.6.
The geometry of cylindrical array and the radiation patterns

synthesized by SA [8], LP [15] and CPSO are plotted in Figure 4.
The amplitudes and phases of the excitation coefficients optimized by
CPSO are shown in Table 7. The average synthesis time using CPSO
after maximum iterations is shown in Table 5.

Table 7. Excitation coefficients (Imk/χmk (Deg)).

k m = 1, 8 m = 2, 7 m = 3, 6 m = 4, 5
1 2.158/151.66 2.020/36.12 1.687/169.40 0.041/111.68
2 0.684/63.70 0.435/173.76 0.994/36.22 3.255/45.17
3 0.566/122.38 1.716/87.60 3.781/100.69 1.805/69.06
4 3.481/230.36 4.046/187.62 4.759/90.37 0.525/54.52
5 0.712/166.73 2.830/309.15 2.709/195.46 4.201/107.27
6 0.314/217.57 4.083/129.04 2.223/216.23 0.862/105.07
7 3.408/223.76 1.307/320.41 0.672/153.27 0.499/68.22
8 3.206/70.01 3.401/244.98 2.150/26.90 3.917/148.90

From Figure 4(b), compared with SA and LP, the results obtained
by CPSO have the smallest average deviation and ripple in the cosecant
square region. The PSLLc outside the shaped beam region remains
below −30.62 dB while that in [15] is −24.5 dB and in [8] −27.51 dB.

4. CONCLUSIONS

This paper illustrates the use of PSO in the pattern synthesis of
antenna arrays. A hybrid algorithm is proposed by fusing the
advantages of both chaotic search and PSO to avoid the prematurity
and easy trapping in local optimum. The global best position in basic
PSO is replaced by a comprehensive position obtained by the new
learning strategy in which a particle makes each dimension learn from
the corresponding dimension of other particles’ best positions.

The statistical results obtained from the benchmark functions
demonstrate the superiority of the proposed CPSO to WPSO, FIPSO
and PPSO. This is because CPSO integrates the adaptive and chaotic
mechanism into canonical PSO algorithm. In addition, numerical
examples of synthesis problems have been presented. In the amplitude
synthesis of equally spaced linear array, the peak side lobe level found
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by CPSO is 5.11 dB less than that using PPSO in [25]. For position-
only synthesis of unequally spaced linear array, the peak side lobe level
found by CPSO is 4.37 dB less than that in [26], and the null level
at certain direction obtained by CPSO is 3.16 dB less than that in
[13]. In the application of the conformal array synthesis, the peak side
lobe level outside the shaped beam region found by CPSO is 6.12 dB
less than that using LP in [15] and 3.11 dB less than that using SA
in [8]. Deviation and ripple in the cosecant square region obtained
by CPSO are the smallest. The results of the proposed algorithm
indicate its potential ability in the antenna designs for a wide class of
electromagnetic applications.
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