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Abstract—In this paper, accurate analytical expressions for the
impedance of vertical electric and magnetic dipoles which are located
over the half-space materials of arbitrary permittivity and permeability
are developed. In this regard, the impedance variations are expressed
in integral forms. For metamaterial half-space, a proper expression
for approximating the Fresnel reflection coefficient is proposed. Using
this approximate expression, the impedance integrals are analytically
solved, and exact formulas for impedance variations are obtained.
The results for the metamaterial half-spaces are compared with the
case of natural materials (positive permittivity and permeability), and
key differences are explained. The influences of sign changing in
permeability of the half-space material on the impedance of vertical
dipole are studied, and the results are validated by comparison with
those of numerical solution of integrals. It is shown that for elevated
dipoles over materials with high and/or low conductivities, the results
of both methods are in complete agreement. For vertical dipoles above
low loss materials, the results are somewhat identical. However, a
better agreement could be obtained using higher order approximations
for the integrand.
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1. INTRODUCTION

The metamaterials was introduced in 1968 as a novel class of
electromagnetic materials [1, 2]. These materials retain attractive
phenomena for antenna and microwave applications [3–7]. Various
methods of fabricating materials with negative permittivity and/or
permeability have already been proposed [8–11]. Therefore, nowadays,
having desired metamaterials is presumable. Prior to extending the
usage of metamaterials in microwave or photonic structures, thorough
investigation on scattering from metamaterials is required. So far there
has been few theoretical studies of wave scattering mechanism from
metamaterials [12–16]. However, dipole scattering from the natural
earth (ε and µ positive) has been the research subject for many years.
The scattering modelling is mainly based on the spherical source
transformations via Fourier-Bessel transformations. Although many
articles and books are devoted to this method, it is still an undergoing
research issue. A good review of the Fourier-Bessel transformations
method can be found in [17] and references therein.

When the environment is lossy material, an important aspect of
a radiation system is the power efficiency. Here, we are interested in
the amount of power that is dissipated in the lower lossy half-space in
comparison with the amount of power that would be emitted by the
same dipole when it is located in free space. As stated by [18], instead
of using a tedious approach of integrating the real part of Poynting
vector over a plane just above the lossy half-space, a much simpler
method of direct calculation of the change in the self-impedance of
dipole, as a quantitative criterion for loss, may be applied. As a result,
both variations of the resistive and reactive parts are obtained. The
simplest method to accomplish this investigation is to study the self-
impedance variations of the dipole from its value, Z0, in free space to its
value, Z, in presence of the lossy material half-space. The impedance
variations of short dipole over the lossy earth have been studied by
many researchers. Integral expression for the impedance variations in
terms of the media parameters and the elevation of dipole can be found
in [18–21].

Metwally and Mahmoud have derived expressions for the
impedance variations of VED (Vertical Electric Dipole) and VMD
(Vertical Magnetic Dipole) over natural half-space with µ = 1 in terms
of rapidly converging series [19]. They have also solved the integrals
by the discrete and continuous image method [20, 21]. Analysis of
microstrip dipole antennas on layered metamaterial substrate has
been carried out in [22], where the method of moment and array
scanning method were used for calculating the impedance of dipole
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antennas in the vicinity of metamaterials. Recently, [23] developed
exact expressions for EM field of VMD in the vicinity of the common
lossy materials.

In this paper we develop accurate analytical expressions for input
impedance of vertical short dipole that is located above metamaterial
half-space. In this regard, proper expressions for approximating the
Fresnel reflection coefficient for VED and VMD radiation above DPS (ε
and µ positive), ENG (ε negative), MNG (µ negative), and DNG (ε and
µ negative) materials of arbitrary permittivity and permeability are
developed. Similar investigation for horizontal electric and magnetic
dipoles over lossy half-space is under investigation by the authors.

The paper is organized in five sections as follows. In Section 2, the
integral equation for a vertical dipole above lossy half-space is derived.
Third Section is devoted to solution of the integral expressions by
deriving proper approximation of the Fresnel reflection coefficient for
VED and VMD radiation above the materials of arbitrary permittivity
and permeability. In the fourth section, the solution of the derived
expressions are numerically verified. Finally, in the last section,
discussion of the results and conclusion is provided.

2. PROBLEM FORMULATION

A radiating electric and/or magnetic Hertzian dipole in free space is
considered. The dipole is located at distance of z = h above a lossy
material with arbitrary permittivity and permeability. The geometry
of problem is shown in Fig. 1. In order to find the input impedance
variations of the dipole, the near fields must be calculated. For VED,
the electric field and for VMD the magnetic field calculations are
required. The impedance variations are calculated in the following
subsections for both dipoles.

Figure 1. The geometry of problem.
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2.1. VED

The input impedance variation for VED in terms of the scattering field
can be obtained from [18],

∆Z = lim
z→z0
ρ→0

−Es
zdl

I
. (1)

The scattering field, Es
z , can be calculated by solving the following

wave equation for Hertzian potential in two mediums:

∇2Π− γ2
i Π = − Idl

j2πωε0
δ(ρ)δ(z − h), (2)

where
Π = (0, 0,Πz) (3)

and γi, i = 0, 1 are the complex propagation constants of mediums,
given as,

γ2
0 = jωµ0(jωε0) z > 0

γ2
1 = jω2µ0ε0µr(S|εr|+ jεr) z < 0

S =
σ

ω|εr| .
(4)

With reference to the cylindrical coordinate system, the solution for Π
involves linear superposition of the eigenfunctions:

Πz = exp
[
±(λ2 + γ2)1/2z

] {
cos(nφ)Jn(λρ)

sin(nφ)Yn(λρ)
(5)

where λ denotes the eigenvalue. Since the solutions should be finite
at ρ = 0 (expect at the source) and the fields have to be symmetrical
about the z axis, thus, the eigenfunctions would be of the following
form with no φ dependency:

J0(λρ) exp
[
±(λ2 + γ2)1/2z

]
. (6)

Therefore,

Πz =
Idl

j4πωµ0





∞∫
0

J0(λρ)
(
e−u0|z−h|+Ree

−u0(z+h)
)

λdλ
u0

, z>0
∞∫
0

TeJ0(λρ)eu1zdλ, z<0
(7)

where Re and Te are the unknown reflection and transmission
coefficients, respectively. The electromagnetic fields can be obtained
as,

E = ∇(∇ ·Π)− γ2Π
H = ŷ∇×Π

(8)
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where ŷ = σ + jωε. Substituting for Π from (7) and applying the
appropriate boundary conditions at z = 0, the following expressions
for the unknown coefficients are obtained,

Re =
ŷ1

ŷ0
u0 − u1

ŷ1

ŷ0
u0 + u1

Te =
2λ

ŷ1

ŷ0
u0 + u1

e−u0h

(9)

where
ui = (γ2

i + λ2)1/2, i = 0, 1 (10)

with Re(ui > 0). The scattering fields are, then, determined from (8).
Now, after some mathematical manipulations of (1), the normalized
impedance variation for VED can be found as,

∆Z

Re0
=

3
2γ3

0

∫ ∞

0
Ree

−2u0h λ3

u0
dλ (11)

where Re is given by (9) and Re0 = 20(k0dl)2 is radiation impedance
of the electrical dipole in free space.

2.2. VMD

The input impedance variation for VMD can be calculated from [18],

∆Z = jωµ0 lim
z→z0
ρ→0

Hs
zdA

Im
. (12)

In a same manner as the VED case, the scattering fields can be found
by solving the following wave equation for Hertzian magnetic potential,

∇2Π∗ − γ2
i Π∗ = − Imdl

j2πµ0ω
δ(ρ)δ(z − h), (13)

with
Π∗ = (0, 0,Π∗z). (14)

The solution is,

Π∗z =
IdA

4π





∞∫
0

J0 (λρ)
(
e−u0|z−h| + Rme−u0(z+h)

)
λdλ
u0

, z > 0

∞∫
0

TmJ0 (λρ) eu1zdλ, z < 0
(15)
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The electromagnetic fields are, then, found from the following
equations:

E = −ẑ∇×Π∗

H = ∇(∇ ·Π∗)− γ2Π∗
(16)

where ẑ = jωµ. Substituting from (15) and applying the appropriate
boundary conditions at z = 0, the unknown coefficients are obtained
as,

Rm =
ẑ1
ẑ0

u0 − u1

ẑ1
ẑ0

u0 + u1

,

Tm =
2λ

ẑ1
ẑ0

u0 + u1

e−u0h.

(17)

Upon calculation of the scattering fields from (16), the impedance
variation of VMD can be obtained as,

∆Z

Rm0
=

3
2γ3

0

∫ ∞

0
Rme−2u0h λ3

u0
dλ (18)

where Rm is given by (17) and Rm0 = 20(k2
0dA)2 is the free space

radiation impedance of the magnetic dipole. This expression is similar
to (11) for impedance variation of VED.

3. EXACT SOLUTION OF INTEGRAL WITH
APPROXIMATED INTEGRAND

Regarding to the similarity of (11) and (18) for VED and VMD
impedance variations, respectively, these integrals can be written in
a general form,

∆Z

R0
=

3
2γ3

0

∫ ∞

0
Re−2u0h λ3

u0
dλ (19)

defining R as,

R =
eu0 − u1

eu0 + u1
(20)

where e is equal to ŷ1/ŷ0 and ẑ1/ẑ0 for VED and VMD cases,
respectively, and

R0 =

{
Re0 = 20 (k0dl)2 , VED

Rm0 = 20
(
k2

0dA
)2

, VMD
(21)

Now, changing the variable of integration to u0, the contour of
integration runs along the imaginary axis from γ0 to origin and then
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Figure 2. The integration path in u0 plane.

along the real axis to ∞, as shown in Fig. 2. There exists another
integration path which starts from −γ0 to 0 on the imaginary axis and
proceeds to −∞ on the real axis. However, this is an improper path,
because it results in exponentially growing results. Therefore, (19)
becomes,

∆Z

R0
=

3
2γ3

0

∫ ∞

γ0

R
(
u2

0 − γ2
0

)
e−2u0hdu0. (22)

Defining,
α0

∆= (u2
1 − u2

0)
1
2 = (γ2

1 − γ2
0)

1
2 , (23)

so that,

α0 =
[
ω2µ0ε0 (1− µrεr) + jω2ε0 (µr |εr|S)

] 1
2 , (24)

we may rewrite (20)) as,

R =
1

e2 − 1

[(
e2 + 1

)
u2

0 + α2
0

u2
0 − g2

− 2e
u0u1

u2
0 − g2

]
, (25)

where g2 = α2
0/(e2 − 1). To approximate the Fresnel reflection

coefficient, we use the first order binomial expansion for u1 in (25)
as,

u1 =
(
u2

0 + α2
0

) 1
2 = (u0 + α0)

(
1− 2u0α0

(u0 + α0)
2

) 1
2

, (26)

u1 ' (u0 + α0)
(

1− u0α0

(u0 + α0)
2

)
, (27)

This is the same approximation as in [19] for DPS half-space. The
convergence condition for binomial expansion in (25) is,

F1
∆=

∣∣∣∣
2u0α0

(u0 + α0)
2

∣∣∣∣ < 1. (28)
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When both εr and µr are positive (DPS), according to (10) and (24),
α0 is in the first quadrant. Therefore, the real and imaginary parts of
u0 and α0 are positive and the condition of (28) is always satisfied.
However, for the metamaterial half-space, this condition may be
violated. In this case the real and imaginary parts of α2

0 may become
negative, resulting in F1 > 1.

Next, we investigate the proper expressions for u1 for the ENG,
MNG, and DNG metamaterials, individually. For ease of explanation,
we separate the path of integration into two parts. The first path runs
along the imaginary axis from γ0 to the origin and the second path
goes along the real axis from origin to ∞.
• ENG half-space (εr < 0 and µr > 0): In this case, according

to (24), both real and imaginary parts of α2
0 are positive.

Therefore, the expression (27) for u1 is still valid.
• MNG half-space (εr > 0 and µr < 0): According to (24), α2

0 is in
the forth quadrant and, thus, α0 would be in the second and/or
forth quadrant. If α0 is chosen to be in the second quadrant,
although, on the first path F1 < 1, but along the second path
F1 > 1. Therefore, in this case, the proposed expansion of (27)
diverges and would be an improper choice.
To resolve this divergence problem, we rewrite the first order
binomial expansion of u1 in the following form,

u1 =
(
u2

0 + α2
0

) 1
2 = (u0 − α0)

(
1 +

2u0α0

(u0 − α0)
2

) 1
2

, (29)

u1 ' (u0 − α0)
(

1 +
u0α0

(u0 − α0)
2

)
. (30)

Therefore, the convergence condition for the binomial expansion
is,

F2
∆=

∣∣∣∣
2u0α0

(u0 − α0)
2

∣∣∣∣ < 1. (31)

Figure 3 shows the values of proper and improper expansions on
the second path at two different frequencies. It is obvious from
this figure that in this case F2 < 1 and so the binomial expansion
converges. The other way to resolve the problem is choosing α0

in the forth quarter and using the same Equation (27) that was
used for ENG and DPS cases.

• DNG half-space (εr < 0 and µr < 0): For both negative µr and
εr, α2

0 is located in the third quadrant. Therefore, α0 is located
in the second and/or forth quadrant and the same procedure as
MNG can be used for DNG.
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Substituting (30) in (25) and the result in (22), and after some
mathematical manipulations, based on the desired values of e, the
solution of the integral for VED and VMD is obtained as,

∆Z

R0
=

3
2γ3

0

[
A

∂2F

∂x2
+ BF + CI1 + DI2 + EI3

]
(32)

where

A =
e− 1
e + 1

B =

(
g2 − γ2

0

)
(e− 1)2 + α2

0 (1− 2e)
e2 − 1

C =
2e

e2 − 1
α3

0

(
α2

0 − γ2
0

)
(
α2

0 − g2
)

D =
−α2

0γ
2
0 + g2

[
α2

0 + g2 − γ2
0

(
e2 + 1

)]

2g (e2 − 1)

− 2e

e2 − 1

(
g2 − γ2

0

) [
α2

0 + g (α0 + g)
]

2 (g + α0)

E =
α2

0γ
2
0 − g2

[
α2

0 + g2 − γ2
0

(
e2 + 1

)]

2g (e2 − 1)

− 2e

e2 − 1

(
g2 − γ2

0

) [−α2
0 + g (α0 − g)

]

2 (g − α0)
,

(33)
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and

F =
e−γ0x

x
I1 = exp(α0x)E1 ((γ0 + α0) x)
I2 = exp(−gx)E1 ((γ0 − g)x)
I3 = exp(gx)E1 ((γ0 + g) x)

(34)

where E1 is the exponential integral. In derivation of (33), we have
used the following integral identities [24],

E1(γ0) =
∫ ∞

γ0

e−x

x
dx (35)

∫ ∞

γ0

une−u0xdu0 = (−1)n ∂n

∂xn

(
e−u0x

x

)
. (36)

4. NUMERICAL RESULTS AND DISCUSSION

In order to verify the validity of our proposed approximate method,
we solve (11) and (18) numerically and compare the results with those
of (32) for VED and VMD. The impedance variation is expressed in
terms of a resistive variation, ∆R, and a reactance variation, ∆X,
in the usual manner as: ∆Z = ∆R + j∆X. These parameters are
normalized with respect to R0, which is the radiation resistance of
the dipole when it is located in the free space. In what it follows,
the results for the normalized values of ∆R and ∆X are obtained for
various values of parameter 2k0h for 1.2 < 2k0h < 9. Argand plots are
used to show the impedance variations of VED and VMD located over
DSP, ENG, MNG, and DNG half-spaces.

Figures 4 and 5 compare the results for VED and VMD over DPS
and DNG materials with |εr| = 10, |µr| = 10 and S = 10, respectively.
Although, as it is seen that the results are in complete agreement, the
proposed method is much faster than the numerical integration. As an
example, we mention that the computation time for 80 impedances, on
a computer with Intel(R) Core(TM) 2 Duo CPU E7500 @ 2.93 GHz
2.95GHz, for numerical integrations was 91.8 seconds. However, for
the proposed algorithm this computation time was decreased to 0.12
seconds, a reduction of about 765 times in CPU time!

Figures 6 and 7 show the impedance variations for VED and
VMD located above DPS, DNG, MNG and ENG materials for the
same elevation range of dipoles and absolute values of permittivity
and permeability. It is seen that the variation ranges of impedances
are highly dependent on the sign of permeability.
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The accuracy of algorithm is highly influenced by the material
loss, since the convergence rate of the series expansions are directly
dependent on the amount of loss. Therefore, as the loss decreases,
inclusion of higher order terms are required. For VMD over DNG
metamaterial with |εr| = 10, |µr| = 1 and higher loss (S = 10), the
first order approximation of (30) is adequate for accurate calculation
of (19), as shown in Fig. 8. For low loss cases of S = 1 and S = 0.01,
as shown in Figs. 9 and 10, respectively, it is seen that the first order
approximation for the binomial expansion is not sufficient for accurate
solution of integrals, although the results may agree. It is seen that
for S = 1, three terms expansion is sufficient, while for S = 0.01,
at least 5 terms is required. Obviously, using more terms of series
for integrand approximations increases the computation time. For
example, for 5 terms approximation, the computation times increases
to 11.07 seconds.
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Based on scrutinized and presented diagrams, it is obvious
that locating a dipole above half-space of arbitrary characteristics
would cause some variations in its input impedance. The additional
impedance, regardless of being real or imaginary, is illustrative of loses.
However, it is important to investigate that which one of the half-space
materials introduces lower amount of losses. We perform this study for
VED and VMD cases, separately.

Referring to Fig. 6, it can be observed that there is not much
variation in input impedance of VED, when it is located above DPS
and ENG half-spaces. However, if for the lower half-space a material
with negative permeability is used, the diagram of impedance would
be contracted. This means that lower amount of losses would be
introduced to the structure for the cases of MNG and DNG.

As it can be seen from Fig. 7, when VMD is situated above the
half-space of DPS or ENG, as for the VED case, the difference in input
impedances is negligible. However, if the lower half-space is made of
a material with negative permeability, the diagram of impedance, in
contrast to the VED case, would be expanded. This means that if
MNG or DNG metamaterial half-spaces are used, the amount of losses
would be much more than the DPS or ENG cases.

This discussion reveals the importance of sign changing in
permeability of the half-space material for vertical dipoles.

5. CONCLUSION

In this paper accurate analytical expressions for the input impedance
variations of electric and magnetic dipoles, located over the half-space
material with arbitrary permittivity and permeability, were developed.
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The input impedance variations of VED and VMD were found in
integral forms. These integrals were solved by introducing appropriate
approximation for the Fresnel reflection coefficient. Accuracy of
the analytical expressions was verified by numerical solution of the
integrals. A complete agreement between the results was observed for
the materials with any amount conductivity, regardless of the operating
frequency and elevation height of dipoles. However, for very low loss
half-space materials, higher order approximations were required for
likeness of the results.

Finally, the relationship between the type of half-space materials
and introduced losses to the structure were carefully investigated. It
was found out that for VED over MNG and DNG half-spaces, in
comparison with DPS case, the amount of the introduced losses to
the structure were lower, while it was higher for the case of VMD.

The proposed method of analysis would found its applications
in future works on microstrip structures involving metamaterial
substrates.
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