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1. Introduction

The modeling of small apertures for Electromagnetic Interference
(EMI) applications using the Finite-Difference Time-Domain (FDTD)
technique has recently been presented [1]. That paper addressed the
problem of an isolated small aperture. However, in typical applications
it is an array of closely spaced apertures which is of interest, such as is
used, for example, for cooling of computers and other electronic equip-
ment. With increasing clock rates and increasingly fast computers, the
transmission of electromagnetic waves through such arrays is becom-
ing an increasingly severe problem. Whereas the isolated aperture has
been the subject of extensive research [2–22], the modeling of multiple
interacting apertures has been little addressed [23–26]. Through the
application of Babinet’s principle the scattering from an array of cir-
cular disks, which finds application in the theory of artificial dielectrics,
is a related problem. In [23] the interaction in an infinite periodic array
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of circular disks is solved assuming dipole fields. In [24] transmission
through an infinite periodic lattice of rectangular apertures is solved
through a variational approach. In [25] transmission through an infi-
nite periodic lattice of apertures in an infinitely thin screen is solved
via the moment method, and in [26] the same problem is solved for
apertures in a thick screen. All of the above referenced work is con-
cerned with infinite arrays. We consider here an arbitrary finite array
of circular apertures in a thin screen, and this problem implemented
in the FDTD technique, where it is then easily coupled to more com-
plex configurations. The purpose of this paper is to extend the isolated
aperture formulation to model arrays of closely-spaced apertures. As
in the isolated aperture formulation [1], the present formulation as-
sumes apertures in an infinite perfectly-conducting thin screen, but is
applicable to apertures in a finite screen.

We begin in Section 2 with a look at an analytical solution based
on interacting electric and magnetic dipoles, which applies to an arbi-
trary array of apertures, and this solution is compared with the solution
for an infinite array of apertures. In Section 3 we modify the isolated
aperture formulation to allow sources on both sides of the screen, since
for multiple apertures the fields transmitted by one aperture can excite
another aperture from the back, or transmission, side of the screen. The
formulation for sources on both sides of the screen follows directly from
the superposition principle. The isolated aperture formulation, modi-
fied so as to allow sources on both sides of the screen, can be applied
with high accuracy to an array of apertures, provided the apertures are
spaced at least two grid cells apart. For closely spaced apertures, that
is, apertures spaced one grid cell apart, the isolated aperture method
can lead to an error in transmitted power in excess of ten percent. This
error is due to inaccuracies in the FDTD dipole fields. In Section 4 we
present a method to subtract the effect of error in the FDTD dipole
fields. The correction is based on an analytical solution of the FDTD
equations for dipole radiation. In Section 5 we evaluate the method,
comparing the FDTD solution with the analytical solution.

2. Analytical Solution for a Finite Array of Apertures

An example geometry of multiple interacting apertures is illus-
trated in Figure 1, which indicates a plane wave incident on an aperture
perforated screen. Alternately, as shown in the figure, we may have a
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dipole of moment Il radiating in the presence of the screen. To test the
accuracy of the multiple aperture method presented here we employ an
analytical solution. An analytical solution is here presented which is
applicable to an array of interacting, perhaps closely spaced, apertures.
The solution is obtained by approximating the aperture array fields to
be that of an array of electric and magnetic dipoles which represent the
apertures according to Bethe’s hole theory [19]. This approximation is
here referred to as the dipole approximation. For large closely-spaced
apertures higher order multipole interaction becomes important, and
hence the importance of the multipole terms is assessed so as to deter-
mine the range of validity of the dipole approximation.

Figure 1. Geometry of multiple interacting apertures.

The simplest treatment of an array of apertures is to consider
them as being independent, or non-interacting. For this case the surface
magnetic currents representing the aperture fields are the same as the
fields of an isolated aperture, and to high accuracy the aperture fields
are given by the Rayleigh series solution [2,22]. The effect of aperture
interaction is here assessed by comparing the magnetic surface currents
and transmitted power with those values for the independent, or non-
interacting, apertures.

The Rayleigh series solution for the circular aperture fields is de-
termined by the total short-circuit electric and magnetic fields at the
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center of the aperture. The short-circuit field at the center of each aper-
ture is the short-circuit field due to the incident wave plus the short
circuit fields produced by all the other apertures, including the cou-
pling from the back side of the screen. The geometry of this problem
is shown in Figure 2.

Figure 2. Dipole approximation geometry.

Denoting the magnetic surface current Kx at the n th aperture as
(Kx)n , and the electric field escz at the center of the n th aperture as
(escz )n , etc., we can write,

(Kx)n=− ik∆2γmε(hscx )n

+ γmε
∑
n′ �=n

[
Lxxnn′(Kx)n′ + Lxynn′(Ky)n′ + Lxznn′(ηIz)n′

]
(1)

(Ky)n=− ik∆2γmε(hscy )n

+ γmε
∑
n′ �=n

[
Lyxnn′(Kx)n′ + Lyynn′(Ky)n′ + Lyznn′(ηIz)n′

]
(2)

(ηIz)n= + ik∆2γeε(escz )n

− γeε
∑
n′ �=n

[
Lzxnn′(Kx)n′ + Lzynn′(Ky)n′ + Lzznn′(ηIz)n′

]
(3)
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where αe = γea
3 and αm = γma3 are the electric and magnetic polar-

izabilities [7] of the aperture; ε ≡ ( a∆)3 is regarded as a small parame-
ter; a is the radius of the aperture and ∆ the grid spacing; escz = Esc

z

and hsci = ηHsc
i are the normalized electric and magnetic fields; and

Iz and Ki are the electric and magnetic currents representing the
aperture. For a small circular aperture γe = 2/3 and γm = 4/3 . In
the above,

Lxxnn′ =
1
π
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∆
r

)3
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x
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[3− 3ikr + (ikr)2]
}
eikr (4)
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∆
r

)3(xy

r2

)
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(1− ikr)eikr (6)

Lyxnn′ =
1
π

(
∆
r

)3(xy
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[3− 3ikr + (ikr)2]
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(1− ikr)eikr (9)
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iky
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Lzznn′ =
1
π

(
∆
r

)3{
− 1 + ikr − (ikr)2

}
eikr (12)

give the dipole fields of the n′ th aperture at the center of aperture
n , including the contribution from the transmitted fields of the other
apertures. Also, r ≡ rnn′ is the distance between the centers of aper-
tures n and n′ , and x and y are the distances in the x and y
directions between the two apertures. In order to write (1)–(3) as a



80 Oates et al.

matrix multiplication, we define,

Mab
nn′ =

{
Labnn′ if n �= n′

0 otherwise
(13)

The above equations can now be represented by a matrix equation with
the following definitions,

M
ab

=




Mab
11 Mab

12 . . . Mab
1N

Mab
21 Mab

22 . . . Mab
2N

...
...

. . .
...

Mab
N1 Mab

N2 . . . Mab
NN




(14)

a, b = x, y, z (15)

F
sc
x =




−ik∆2(hscx )1

−ik∆2(hscx )2
...

−ik∆2(hscx )N




(16)

F
sc
y =




−ik∆2(hscy )1

−ik∆2(hscy )2

...

−ik∆2(hscy )N




(17)

F
sc
z =




−ik∆2(escz )1

−ik∆2(escz )2
...

−ik∆2(escz )N




(18)
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Kx =




(Kx)1

(Kx)2
...

(Kx)N




(19)

Ky =




(Ky)1

(Ky)2
...

(Ky)N




(20)

ηIz =




η(Iz)1

η(Iz)2
...

η(Iz)N




(21)

With these definitions Equations (1)–(3) can be written in block matrix
form as,




Kx

Ky

ηIz


 = εγ ·
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F
sc
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F
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 + εγ ·
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 ·
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Ky
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 (22)

where,

γ =



γmI 0 0

0 γmI 0

0 0 −γeI


 (23)

The aperture currents are then given by,

K =εγ · F sc + εγ ·M ·K (24)

=(I − εγ ·M)−1 · εγ · F sc (25)

=(I + εγ ·M + ε2(γ ·M)2 + · · ·) · εγ · F sc (26)
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where,

F
sc =



F
sc
x

F
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F
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z


 (27)

K =
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Ky
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 (28)
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xx
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xy
M
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 (29)

The power transmitted by the aperture array is equal to the power
radiated by the equivalent dipoles in the presence of the perfect con-
ductor. From the complex Poynting vector theorem the transmitted
power is given by,

P =
(k∆)2

6πη
K
† ·K +

1
2η(k∆)

Im{K † ·M ·K} (30)

The effect of aperture interaction is illustrated in Tables 1–4 for a
5× 5 array of closely spaced apertures. The tables give the percentage
increase in the aperture magnetic current over the isolated aperture
value for two aperture sizes, a/∆ , and two frequencies, ∆/λ = .05
and ∆/λ = .1 , which correspond respectively to twenty and ten grid
cells per wavelength. The tables indicate that the magnetic currents
increase with both frequency and aperture radius, and the increase
with radius is proportional to (a/∆)3 . The effect of interaction is to
increase the magnetic currents by as much as 24%.
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Table 1. Percentage increase in the aperture magnetic current over the

isolated aperture value for ∆/λ = .05, a/∆ = .25.

Table 2. Percentage increase in the aperture magnetic current over the

isolated aperture value for ∆/λ = .1, a/∆ = .25.

Table 3. Percentage increase in the aperture magnetic current over the

isolated aperture value for ∆/λ = .05, a/∆ = .45.



84 Oates et al.

Table 4. Percentage increase in the aperture magnetic current over the

isolated aperture value for ∆/λ = .1, a/∆ = .45.

Through Babinet’s principle we can compare the finite array re-
sults with those given in [23] for an infinite array of disks. The electric
polarizability of the disk is [21] αe = 16a3/3 . Applying Babinet’s prin-
ciple to the array of disks we find that the induced magnetic currents
for an infinite array of circular apertures are given by,

Kil =
αe/4

1− αeCee

∂hsci
∂τ

(31)

where αe is the disk polarizability, which is different than the aperture
polarizability. For normal incidence the interaction constant Cee is
given as [23],

Cee =
1

π∆3

{
1.2− 2

∞∑
m=1

∞∑
n=1

(γn∆)2K0(mγn∆)

+ (k∆)2
[
− 0.727 +

1
2

∞∑
m=1

(
2π

γm∆
− 1

m

)]

+
1
96

(k∆)4 + i

[
π

2
(k∆)− 1

6
(k∆)3

]}
(32)

where γ2
n = (2nπ)2 − k2 and K0 is the modified Bessel function.

The increase in the magnetic currents due to interaction is given by
(1− αeCee)−1 , which is presented in Table 5 below.
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Table 5. Percentage increase in the aperture magnetic current over the

isolated aperture value for an infinite array of apertures.

These results compare well with the results in Tables 1–4 when
∆/λ = 0.05 . For higher frequencies ( ∆/λ = 0.1 ) the finite aperture
array results are strongly dependent on the size of the aperture array.
For large arrays the finite array results approach those for the infinite
array.

A rough idea of the attenuation which can be expected from an
array of apertures can be inferred form the transmission coefficient for
an infinite array of apertures, which appears to a plane wave as a shunt
susceptance [27]. The transmission coefficient for an infinite array of
interacting apertures can be shown to be,

T = −ik∆
8
3(a/∆)3

1− 16
3 (a/∆)3Cee∆3

(33)

Before proceeding to the FDTD implementation of multiple in-
teracting apertures we consider the effect of the higher-order multipole
interaction between the apertures. Our objective here is to assess the
error in neglecting these higher-order interactions.

From the preceding analysis we know that the currents at the
n th aperture, within the Rayleigh series approximation to order ka ,
are induced by the fields at the center of the aperture, and these fields
include the short-circuit field due to the incident and reflected waves,
and, in addition, the fields scattered from the other apertures. In the
above analysis the fields scattered from the other apertures are ap-
proximated as dipole fields. For closely-spaced apertures, however, the
higher-order multipole fields from neighboring apertures become im-
portant. These higher-order fields decay rapidly away from the center
of the aperture, and hence we suspect the higher-order interaction to
be important only for large, closely-spaced, apertures. In the following
we restrict ourselves to the case of normal incidence, where only a mag-
netic dipole moment is induced, and consider the strength of the mag-
netic fields from the nearest-neighbor apertures for apertures spaced
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one per FDTD cell. To assess the error in neglecting higher-order in-
teractions, we determine the magnetic field due to the higher-order
multipoles and compare this field with the total magnetic field com-
prised of the short-circuit field, dipole fields, and higher-order multipole
fields. The higher-order terms considered are the magnetic quadrupole,
electric quadrupole and magnetic octupole terms.

To lowest order in frequency, the magnetic field close to a circular
aperture is given by,

ikhx =
1
π

∫∫
S′
dS′

{
(y − y′)2 − 2(x− x′)2

R5
Msx(ρ′)−

3(x− x′)(y − y′)
R5

Msy(ρ′)
} (34)

where R ≡
√

(x− x′)2 + (y − y′)2 . In the above the field from the
magnetic current on the back side of the screen has been included.
This integral is of the form,∫∫

A
dSF ·M =

∫∫
A
dSFαMα (35)

where the summation convention is implied on the repeated indices.
Expanding F in a Taylor series expansion gives,∫∫

A
dSF ·M = Fα(0)

∫∫
A
dSMα +

∂Fα
∂xβ

(0)
∫∫

A
dSxβMα

+ 1
2

∂2Fα
∂xβ∂xγ

(0)
∫∫

A
dSxβxγMα

(36)

The first term is the magnetic dipole contribution; the second term
contains the electric dipole and magnetic quadrupole contributions;
and the third term contains the electric quadrupole and magnetic oc-
tupole contributions. These integrals can be evaluated from the equiv-
alent magnetic surface currents given in [1]. After a little algebra the
magnetic field can be written as,

hx = hscx +
8
3π

{
(1 +

1
2
√

2
)(

a

∆
)3 − 13(1− 11

26
√

2
)(

a

∆
)5

}
hscx (37)

where the second term above is the magnetic dipole contribution, and
the third term represents the electric quadrupole and magnetic oc-
tupole contributions. The electric dipole and magnetic quadrupole con-
tributions are zero. The above expression results from evaluating the
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various partial derivatives of F at the center of the aperture, and sum-
ming contributions from the eight nearest neighbors. From the above
we find that the ratio of the higher-order contributions to the dipole
contribution is given by 6.73(a/∆)2 , which is quite large, giving for
a/∆ = .45 a ratio of 1.36 . Hence, for large apertures the higher-
order contributions are larger than the dipole contribution. The to-
tal error in neglecting the higher-order contributions is approximately
7.73(a/∆)5 , which for a/∆ = .45 gives an error of .143 . For this case
the total transmitted power is in error by about 28 %. The higher-order
multipole interaction consequently places a restriction on how large the
aperture radius can be for closely-spaced apertures. For the error in
total transmitted power to be less than 10%, for example, we must
have a/∆ < .37 . In closing, we observe that it is possible, through
a more detailed analysis of the higher-order interaction, to correct for
the above error.

3. Isolated Aperture Formulation for Sources on Both
Sides of the Screen

When sources are present on both sides of the screen the induced
currents from the superposition principle are given by,

K(−)
x =

αm
∆

η(
∂Hsc

x

∂τ

(−)

− ∂Hsc
x

∂τ

(+)

) (38)

K(−)
y =

αm
∆

η(
∂Hsc

y

∂τ

(−)

−
∂Hsc

y

∂τ

(+)

) (39)

ηI(−)
z = − αe

∆
(
∂Esc

z

∂τ

(−)

− ∂Esc
z

∂τ

(+)

) (40)

where the (±) superscript indicates the short-circuit fields on the ±z
side of the screen. Alternately, the induced currents on the +z side of
the screen are given by,

K(+)
x =

αm
∆

η(
∂Hsc

x

∂τ

(+)

− ∂Hsc
x

∂τ

(−)

) (41)

K(+)
y =

αm
∆

η(
∂Hsc

y

∂τ

(+)

−
∂Hsc

y

∂τ

(−)

) (42)

ηI(+)
z = − αe

∆
(
∂Esc

z

∂τ

(+)

− ∂Esc
z

∂τ

(−)

) (43)
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The FDTD implementation of the above equations for a thin screen at
z = 0 is,

K̃p
x(l,m, 0) ≡ αm

∆2
[
4
3
epy(l,m, 1)− 1

6
epy(l,m, 2)−epz(l,m + 1, 0)

+epz(l,m, 0) +
4
3
epy(l,m,−1)− 1

6
epy(l,m,−2)

+epz(l,m + 1,−1)−epz(l,m,−1)] (44)

K̃p
y (l,m, 0) ≡ αm

∆2
[−4

3
epx(l,m, 1)+

1
6
epx(l,m, 2)+epz(l + 1,m, 0)

−epz(l,m, 0)− 4
3
epx(l,m,−1)+

1
6
epx(l,m,−2)

−epz(l + 1,m,−1)+epz(l,m,−1)] (45)

ηĨpz (l,m, 0) = − αe
∆2

[hp−1
y (l,m, 0)− hp−1

y (l − 1,m, 0)

+ hp−1
x (l,m− 1, 0)− hp−1

x (l,m, 0)
− hp−1

y (l,m,−1) + hp−1
y (l − 1,m,−1)

− hp−1
x (l,m− 1,−1) + hp−1

x (l,m,−1)] (46)

where the tilde indicates the currents induced by the incident and re-
flected fields alone. Using these equations without a correction to sub-
tract the dipole fields gives twice the error as the previous formulation
[1], which allowed sources on one side of the screen only. The additional
error results from the dipole fields on the opposite side of the screen.
In the previous formulation the dipole fields were present but did not
induce currents, being on the transmission side of the screen. In the
present formulation, however, the dipole fields on the transmission side
of the screen do induce currents, and the currents induced are equal
to the currents induced from the dipole fields on the incident side of
the screen. Hence, in the present formulation both dipole fields must
be subtracted.

The induced dipole currents with corrections for the dipole fields
on both sides of the screen are,

Kx =
αm
∆

[
(
∂h

(+)
x

∂τ
− ∂h

(−)
x

∂τ
)− (

∂h
(+)
dx

∂τ
− ∂h

(−)
dx

∂τ
)
]

(47)

Ky =
αm
∆

[
(
∂h

(+)
y

∂τ
− ∂h

(−)
y

∂τ
)− (

∂h
(+)
dy

∂τ
−

∂h
(−)
dy

∂τ
)
]

(48)
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ηIz = − αe
∆

[
(
∂e

(+)
z

∂τ
− ∂e

(−)
z

∂τ
)− (

∂e
(+)
dz

∂τ
− ∂e

(−)
dz

∂τ
)
]

(49)

where the (+) superscripts on the currents have been dropped. The
induced currents on the −z side of the screen are the negative of the
above. Since the dipoles on the transmission side of the screen are
opposite the dipoles on the incident side, we have,

h
(−)
dx =− h

(+)
dx (50)

h
(−)
dy =− h

(+)
dy (51)

e
(−)
dz =− e

(+)
dz (52)

and, hence, it is evident that the corrected equations will be identical
with those given in [1] except that now the correction coefficients are
twice the previous values. The corrected equations, then, including
sources on both sides of the screen are,

Kp
x = + α2(

a

∆
)3(ηĨpz − ηĨp−1

z ) + [1− α4(
a

∆
)3]K̃p

x

+ α5(
a

∆
)3K̃p

y (53)

Kp
y =− α2(

a

∆
)3(ηĨpz − ηĨp−1

z ) + α5(
a

∆
)3K̃p

x

+ [1− α4(
a

∆
)3]K̃p

y (54)

ηIpz = [1 + α1(
a

∆
)3]ηĨpz + α3(

a

∆
)3(K̃p

x − K̃p−1
x ) (55)

where K̃p
x = K̃p

x(l,m, n) , K̃p
y = K̃p

y (l,m, n) and Ĩpz = Ĩpz (l,m, n) are
given above, and,

α1 ≡
8γe(2σ1)

π2
(56)

α2 ≡
2γm(2σ1)

π2
(

∆
∆τ

) (57)

α3 ≡
4γe(2σ2)

π2
(

∆
∆τ

) (58)

α4 ≡
8γm(2σ3)

π2
(59)

α5 ≡
8γm(2σ4)

π2
(60)
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4. Correcting the FDTD Dipole Fields

The FDTD algorithm automatically accounts for all aperture in-
teractions, and from this observation we expect the isolated aperture
approach to apply for aperture arrays since it correctly subtracts the
self-field of the aperture while retaining the contributions from all other
apertures. While this is true for apertures spaced at least two cells
apart, it turns out, however, that a sizable error results for closely
spaced apertures. The reason for the error is that the FDTD aperture-
scattered fields are not accurate near the aperture, and hence there
is an error in the interaction fields for closely spaced apertures. The
sources of the error in the FDTD aperture-scattered fields near the
aperture are many. To begin with, an aperture is correctly modeled by
equivalent electric and magnetic dipoles only for distances sufficiently
far from the aperture. We do not attempt here, however, to correct for
this error. As noted above, this places a restriction on how large the
aperture radius can be. The results that are presented below are com-
pared to the dipole approximation to multiple interacting apertures,
and hence our goal here to accurately render this approximation in
the FDTD algorithm. The remaining sources of the error are in the
dipole fields. Figure 2 illustrates the fields Hx , Hy and Ez produced
by currents Kx , Ky and ηIz in the analytical solution. In the dis-
cretized space of the FDTD technique, however, the geometry is as
shown in Figure 3. From these two figures it is evident that the FDTD
dipole fields will differ from the analytical dipole fields. The reasons
for the discrepancies are: (1) the dipoles Kx , Ky and ηIz and their
image dipoles are not coincident as in the analytical solution, but are
separated a distance ∆ ; (2) the FDTD fields close to a dipole deviate
from the continuum values; and (3) the dipoles Kx , Ky and ηIz are
displaced from the center of the aperture. All of these sources of error
are significant only for closely spaced apertures.
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Figure 3. FDTD dipole geometry.

Our approach to correcting the dipole fields is to analytically sub-
tract out the FDTD fields which are incorrect and to add back the
correct fields. For simplicity we consider here a rectangular array of
apertures, although the method can be applied to an arbitrary array
of apertures. The fields at aperture n are due to the short-circuit field
and the fields from all other apertures n′ �= n , and, as in the isolated
apertures case, the fields from aperture n itself as well. Since the aper-
ture interaction fields are incorrect only for close apertures, the above
correction is applied only for the eight nearest neighbors, n′ , of aper-
ture n , and it is assumed that the induced currents at aperture n′ are
the same as those at aperture n . In addition, since the correction is
applied to close apertures only, we need to keep terms only to lowest
order in frequency.

For simplicity the above correction is applied to all apertures,
including those along the edges and at the corners of the aperture array,
even though for these apertures, which do not have eight immediate
neighbors, the correction does not apply. Different corrections can be
derived for edge and corner apertures, but it is evident from the results
given below that the error due to neglecting the different environments
of the edge and corner apertures is small.
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Proceeding, then, with the above approach, to lowest order in
frequency we have,

Lxxnn′ =
1
π

(
∆
r

)3{
− 1 + 3

(
x

r

)2}
(61)

Lxynn′ =
1
π

(
∆
r

)3(3xy
r2

)
(62)

Lxznn′ =
iky

π

(
∆
r

)3

(63)

Lyxnn′ = Lxynn′ (64)

Lyynn′ =
1
π

(
∆
r

)3{
− 1 + 3

(
y

r

)2}
(65)

Lyznn′ =
−ikx
π

(
∆
r

)3

(66)

Lzxnn′ = Lxznn′ (67)

Lzynn′ = Lyznn′ (68)

Lzznn′ = − 1
π

(
∆
r

)3

(69)

The analytical dipole fields from the eight nearest neighbors n′ to n
are,

(
∂hdx
∂τ

)ANAL

=
( ∑
n′ �=n

Lxxnn′

)
Kx+

( ∑
n′ �=n

Lxynn′

)
Ky

+
( ∑
n′ �=n

Lxznn′

)
ηIz (70)

(
∂hdy
∂τ

)ANAL

=
( ∑
n′ �=n

Lyxnn′

)
Kx+

( ∑
n′ �=n

Lyynn′

)
Ky

+
( ∑
n′ �=n

Lyznn′

)
ηIz (71)
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(
∂edz
∂τ

)ANAL

=
( ∑
n′ �=n

Lzxnn′

)
Kx+

( ∑
n′ �=n

Lzynn′

)
Ky

+
( ∑
n′ �=n

Lzznn′

)
ηIz (72)

which from Equations (61)–(69) can be evaluated as,

∆2

(
∂hdx
∂τ

)ANAL

=
8σ0

π2
Kx (73)

∆2

(
∂hdy
∂τ

)ANAL

=
8σ0

π2
Ky (74)

∆2

(
∂edz
∂τ

)ANAL

=
−16σ0

π2
ηIz (75)

σ0 ≡
π

2
[1 +

1
2
√

2
] = 2.12616 (76)

In an analysis identical to that for the isolated aperture [1], the FDTD
dipole fields for an array of (2N + 1) × (2N + 1) apertures, N an
integer, are given analytically as,

∆2

(
∂hdx
∂τ

)FDTD

+2Kx =
8
π2

(σ3Kx − σ4Ky)

− 2σ1

π2
(−ik∆)ηIz (77)

∆2

(
∂hdy
∂τ

)FDTD

+2Ky =
8
π2

(−σ4Kx + σ3Ky)

+
2σ1

π2
(−ik∆)ηIz (78)

∆2

(
∂edz
∂τ

)FDTD

+2ηIz =
4σ2

π2
(−ik∆)(Kx −Ky) +

8σ1

π2
ηIz (79)

The constants σn , however, are different than the corresponding con-
stants for an isolated aperture given in [1], representing now the fields
of the aperture array, and are given by,
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σ1 ≡ 2
∫ π

2

0
dx

∫ π
2

0
dyF · sin[(2N + 1)x]

sinx
· sin[(2N + 1)y]

sin y
· [G− F ](80)

= 1.22651 (81)

σ2 ≡ 2
∫ π

2

0
dx

∫ π
2

0
dy

sin2 y cos2 x
FG

{
1 + 2

1− (F + G)2N

[1− (F + G)](F + G)2N

}

· sin[(2N + 1)y]
sin y

(82)

= 1.06078 (83)

σ3 ≡2
∫ π

2

0
dx

∫ π
2

0
dy

F cos2 x
G

{
1 + 2

1− (F + G)2N

[1− (F + G)](F + G)2N

}

· sin[(2N + 1)x]
sinx

· sin[(2N + 1)y]
sin y

(84)

= 3.14570 (85)

σ4 ≡ 2
∫ π

2

0
dx

∫ π
2

0
dy

sin2 x sin2 y

F
· sin[(2N + 1)x]

sinx

· sin[(2N + 1)y]
sin y

· [G− F ] (86)

= 4.24389× 10−2 (87)

where,

F = F (x, y) ≡
√

sin2 x + sin2 y (88)

G = G(x, y) ≡
√

1 + sin2 x + sin2 y (89)

The factor of two included in front of each of the above integrals ac-
counts for the dipole fields on the opposite side of the screen.

The above integrals were evaluated for N = 1 , representing a
3×3 dipole array, which includes apertures at n and its eight nearest
neighbors n′ . In evaluating the above double integrals Simpson’s rule
was employed using double precision, and the integration subinterval
size was successively reduced by a factor of three until the integration
converged to within a fractional error of .001 .
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The corrected electric and magnetic currents are then given by,

Kx =
αm
∆

(
∂hx
∂τ
− (

∂hdx
∂τ

)FDTD + (
∂hdx
∂τ

)ANAL
)

(90)

Ky =
αm
∆

(
∂hy
∂τ
− (

∂hdy
∂τ

)FDTD + (
∂hdy
∂τ

)ANAL
)

(91)

ηIz =− αe
∆

(
∂ez
∂τ
− (

∂edz
∂τ

)FDTD + (
∂edz
∂τ

)ANAL
)

(92)

Substituting Equations (73)–(75) and (77)–(79) into the above and
solving for the corrected currents gives the final equations for the cor-
rected currents, which can be written,

Kp
x = + α2(

a

∆
)3(ηĨpz − ηĨp−1

z ) + [1− α4(
a

∆
)3]K̃p

x

+ α5(
a

∆
)3K̃p

y (93)

Kp
y =− α2(

a

∆
)3(ηĨpz − ηĨp−1

z ) + α5(
a

∆
)3K̃p

x

+ [1− α4(
a

∆
)3]K̃p

y (94)

ηIpz = [1 + α1(
a

∆
)3]ηĨpz + α3(

a

∆
)3(K̃p

x − K̃p−1
x ) (95)

where Kp
x = Kp

x(l,m, n) , Kp
y = Kp

y (l,m, n) and Ipz = Ipz (l,m, n) for
an aperture at cell (l,m, n) , and where,

α1 ≡
8γe
π2

(σ1 + 2σ2) (96)

α2 ≡
2γmσ1

π2
(

∆
∆τ

) (97)

α3 ≡
4γeσ2

π2
(

∆
∆τ

) (98)

α4 ≡
8γm
π2

(σ3 − σ0) (99)

α5 ≡
8γmσ4

π2
(100)

These equations are identical with those for the isolated aperture ex-
cept that the constants αn are different. In the next section the above
equations are evaluated.
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5. Evaluation for Closely-Spaced Apertures

The geometry we are considering is given in Figure 1. We have
a plane wave incident on a perfectly conducting, infinitely thin perfo-
rated screen, where the perforations are in the form of either a 5 × 5
square array of apertures with spacing 2∆ , or an 11×11 square array
of apertures with spacing ∆ . The transmitted power without any cor-
rection for the 5×5 array is shown in Figure 4, where the transmitted
power is divided by the analytical (dipole approximation) transmitted
power. The plane wave excitation is incident normal to the screen with
the electric field polarized in the y direction. Two sources of error are
evident as in the isolated aperture case, the first depending on a/∆ ,
and the second on frequency, and the former error, as mentioned above,
is twice that of the isolated aperture case presented in [1], owing to the
error contributed by the dipoles on the transmission side of the screen.

Figure 4. Transmitted power through 5 × 5 array of circular apertures

without correction. Aperture in every other cell.
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The deviation in power at the extreme low end of the band is due to
the failure of the absorbing boundary conditions at low frequencies. If
the equations given in [1] for an isolated aperture are used, modified
so as to include sources on both sides of the screen, the transmitted
power is as given in Figure 5.

Figure 5. Transmitted power through 5× 5 array of circular apertures.

Aperture in every other cell. Isolated aperture correction.

It is evident that for the 5× 5 array, where the spacing between aper-
tures is 2∆ , the isolated aperture correction removes the a/∆ depen-
dent error. Hence for this case the correction for the FDTD dipole fields
is not necessary. The remaining frequency dependent error is discussed
below. Results for the 11 × 11 array without correction are given in
Figure 6. The error without correction for the 11 × 11 array is less
than that for the 5× 5 array. The reason for this is that the error in
the dipole fields cancels a part of the error resulting from the dipole
self-field. If we attempt to use the isolated aperture equations for the
closely-spaced aperture array we see from Figure 7 that the error is
over corrected, which is expected since we have already observed that
the error in the dipole fields cancels part of the error resulting from the
dipole self-field. Here the correction to the FDTD dipole fields is neces-
sary. Applying the nearest-neighbors correction gives the transmitted
power shown in Figure 8 . It is evident that the nearest-neighbor correc-
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tion, to lowest order in frequency, is sufficient to correct for the error in
the dipole fields. Figure 9 shows the transmitted power for non-normal
incidence using the nearest-neighbor dipole field correction.

Figure 6. Transmitted power through 11×11 array of circular apertures

without correction. Aperture in every cell.

Figure 7. Transmitted power through 11×11 array of circular apertures

with isolated aperture correction. Aperture in every cell.
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Figure 8. Transmitted power through 11×11 array of circular apertures

with nearest-neighbors correction. Aperture in every cell.

Figure 9. Transmitted power through 11×11 array of circular apertures

for non-normal incidence using the nearest-neighbor dipole field correc-

tion. The incident field wave vector is given by the spherical coordinates

θ = 45◦, φ = 45◦, and the electric field polarization is rotated 45◦ from

the plane of incidence .
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The incident field wave vector is given by the spherical coordinates
θ = 45◦ , φ = 45◦ , and the electric field polarization is rotated 45◦

from the plane of incidence. The error for this case is not substantially
different from that for normal incidence. Figure 10 shows the trans-
mitted power for a dipole radiating behind the screen at a distance
of 8 grid cells. The error for dipole excitation is nearly the same as
that for plane wave excitation except at the low frequency band edge,
where the discrepancy is due to reflections of the dipole fields from the
absorbing boundary conditions.

Figure 10. Transmitted power through 11 × 11 array of circular aper-

tures using nearest-neighbors correction for a dipole radiating behind

the screen at a distance of 8 grid cells.

The remaining frequency-dependent error evident in Figures 5–
10 is due to the displacement of the dipoles a half grid cell from the
perfect conductor. For a single dipole, such as used in the isolated
aperture formulation, this error is canceled to a large extent by the
error resulting from the discretization of time and space [1]. For an
array of dipoles of equal or nearly equal amplitude and phase, however,
this dipole displacement error is much larger. Figure 11 shows the
error due to displacing an 11 × 11 array of dipoles a grid cell from
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the image dipoles. Three curves are compared. The first curve shows
the numerical FDTD results for an array of equally excited apertures
for which the aperture radius is is small enough ( a/∆ = 0.15 ) so
that aperture interaction is negligible, and hence the magnetic currents
representing the apertures are nearly equal. The power radiated by an
array of equal amplitude and phase magnetic currents in FDTD can
also be calculated analytically. For a (2Nx + 1) × (2Ny + 1) array of
dipoles displaced a half grid cell from a perfect conductor, the FDTD
radiated power is given by,

PFDTD =
|qK0∆|2

8π2η
cos(

k∆τ

2
)
∫ 1

0
du

∫ 2π

0
dφ

u√
1− u2

F (u, φ; q∆/2) (101)

=
|qK0∆|2

8π2η
cos(

k∆τ

2
)
{

2π

√
1− (

q∆
2

)2(2Nx + 1)2(2Ny + 1)2

+
∫ 1

0
du

∫ 2π

0
dφ

√
1− u2

d

du
F (u, φ; q∆/2)

}
(102)

F (u, φ; q∆/2) ≡

√
1− ( q∆2 )2(1− u2)[1− u2 cos2 φ](XY )2√

1− ( q∆2 )2u2 + ( q∆2 )4u4 sin2 φ cos2 φ
(103)

X ≡ sin[(2Nx + 1) sin−1(( q∆2 )u cosφ)]

( q∆2 )u cosφ
(104)

Y ≡ sin[(2Ny + 1) sin−1(( q∆2 )u sinφ)]

( q∆2 )u sinφ
(105)

q ≡ (
2

∆τ
) sin(

k∆τ

2
) (106)

This equation follows directly from the analytical solution to dipole ra-
diation in FDTD presented in [1]. The second curve shows the analyti-
cally derived FDTD radiated power, which can be computed by numer-
ically evaluating the above double integral. The third curve shows the
corresponding continuum radiated power. The numerically computed
and analytically derived FDTD radiated power are nearly equal. As for
the isolated dipole, the FDTD radiated power for the dipole array is
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higher than the continuum radiated power. The frequency-dependent
error observed here is not due to a local inaccuracy, but results from
the global interaction of the apertures. Hence this error cannot be cor-
rected for as previously done [1] for the frequency-dependent error in
the isolated aperture formulation.

Figure 11. Fractional error in transmitted power through an 11 × 11
array of circular apertures due to the displacement of the primary and

image dipoles by one grid cell.

6. Conclusions

The method previously presented for modeling an isolated small
aperture using the FDTD technique [1] accurately models apertures
which are spaced at least two grid cells apart. For closely spaced aper-
tures, however, the isolated aperture formulation overcorrects the cur-
rents, and this is due to errors in the FDTD dipole fields. These errors
can be accurately subtracted out by analytically subtracting out the
FDTD dipole fields from neighboring apertures, and adding back in the
correct fields. The method presented above, based on this approach,
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models the dipole approximation to dense aperture arrays with an error
of only a few percent.
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