BENDING ANALYSIS OF A DUAL-CORE PHOTONIC CRYSTAL FIBER

D. Chen\(^1, 2, *\), G. Hu\(^1, 2\), X. A. Liu\(^1, 2\), B. Peng\(^1, 2\), and G. Wu\(^1, 2\)

\(^1\)Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, China

\(^2\)Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang University, Jinhua 321004, China

Abstract—A dual-core photonic crystal fiber (DC-PCF) is proposed, and bending characteristics of the DC-PCF are investigated. Two fiber cores are employed in the cross-section of the DC-PCF, which result in a mode coupling between the two fiber cores when the light propagates inside the DC-PCF. The mode coupling between two fiber cores of the DC-PCF is sensitive to the directional bending of the DC-PCF which essentially provides a method to achieve bending sensing. A DC-PCF-based bending sensor is proposed by injecting a broadband light into one fiber core of the DC-PCF on one side and detecting output spectrum from another fiber core of the DC-PCF on the other side. In our simulations, a parabola curve which shows the relationship between the wavelength shift of the transmission spectrum of the DC-PCF-based bending sensor and the bending curvature of the DC-PCF is presented.

1. INTRODUCTION

The appearance of photonic crystal fibers (PCFs) [1–10] with silica-air microstructure is a milestone in the history of optical fibers, which have achieved excellent optical properties in birefringence [11–16], dispersion [17–20], single polarization single mode [21–25], nonlinearity [26–30], and effective mode area [31–35] over the past several years. It is well known that PCFs have shown excellent performances in applications such as optical communications [36–38], fiber lasers [39–42], supercontinuum sources [43–46] and also fiber

* Corresponding author: Daru Chen (daru@zjnu.cn).
sensors [47–56]. Fiber sensors based on PCFs have shown numerous advantages such as temperature insensitivity for strain sensing [49, 50], high sensitivity for gas sensing [51], biochemical sensing [52], refractive index sensing [53] and pressure sensing [54, 55], and the flexibility to form fiber sensors based on all-fiber Mach-Zehnder interferometers [56], which are mainly due to the remarkable flexibility in the fiber structure design of the PCF compared with the conventional optical fiber. It is worthy to note that besides the one-core PCF, multi-core PCFs including dual-core PCFs (DC-PCFs) have also been proposed for special applications. DC-PCFs have been designed for coupling inside PCFs [57–60], which can be used to achieve compact PCF couplers. Koshiba’s group has proposed a wavelength MUX-DEMUX based on a DC-PCF [61], a polarization splitter based on a three-core PCF [62], a narrow band-pass filter [63] and a 1 × 4 power splitter [64] based on multi-core PCFs. Meanwhile, bending characteristics such as bending loss of one-core PCFs were reported in the past several years [65–68]. However, to the best of our knowledge, so far there has been no research on the bending characteristics of the DC-PCF.

In this paper, we introduce a DC-PCF with two fiber cores separated by one air hole in the cross-section. The mode coupling between the two fiber cores of the DC-PCF which is sensitive to the directional bending of the DC-PCF is investigated. We show that the mode coupling between two fiber cores of the DC-PCF essentially provides a method to achieve bending sensing based on the DC-PCF. A DC-PCF-based bending sensor is supposed to be achieved by injecting a broadband light into one fiber core of the DC-PCF on one side and detecting the output spectrum from another fiber core of the DC-PCF on the other side. A parabola curve for the wavelength shift of the transmission spectrum of the DC-PCF-based bending sensor and the bending curvature of the DC-PCF is presented.

2. STRUCTURE PRINCIPLE AND PERFORMANCE

Figure 1(a) shows the cross-section of the proposed DC-PCF. The DC-PCF is formed by a triangular lattice of circular air holes with two missing holes as two fiber cores (A and B) which are separated by one air hole. The hole pitch is Λ, which is 2 μm in this paper for bending analysis. The diameter of the air hole is d. To simplify analysis, refractive indices of the pure silica and air are assumed to be 1.45 and 1 (for the straight DC-PCF), respectively. A full-vector finite-element method (FEM) and anisotropic perfectly matched layers are used to investigate guided modes of the proposed DC-PCF. Due to the existence of the two fiber cores in the DC-PCF, here we show two kinds
Figure 1. (a) Cross-section of the DC-PCF. (b) Schematic diagram for the x-bending DC-PCF. (c) Schematic diagram for the y-bending DC-PCF.

of bending DC-PCFs. Figs. 1(b) and (c) show schematic diagrams for the x-bending and y-bending DC-PCF, respectively. For the direct simulation of optical propagation in the bending DC-PCF, we need to employ an equivalent index profile $(n_e(x, y))$ in the cross-section of the DC-PCF, which is given by [68]

$$n_e^2(x, y) = n^2(x, y) \left(1 + \frac{2x}{R}\right)$$ (1)

for the x-bending DC-PCF, and

$$n_e^2(x, y) = n^2(x, y) \left(1 + \frac{2y}{R}\right)$$ (2)

for the y-bending DC-PCF, where R is the radius of curvature and $n(x, y)$ is the refractive index profile of the straight DC-PCF.

For a DC-PCF, two fiber cores in the cross-section lead to two waveguides inside the DC-PCF which accompany with a mode coupling. The coupling length which is defined as $L_c = \lambda/(2|n_e - n_o|)$ [69] is an important parameter for the mode coupling. Note that n_e and n_o are the effective indices of the even mode and the odd mode of the DC-PCF, and λ is the operation wavelength. To understand the mode coupling of the two fiber cores in the DC-PCF, we calculate the two basic modes (the even mode and the odd mode) of the straight DC-PCF with parameters of $\Lambda = 2 \mu m$ and $d = 1.4 \mu m$. For example, when the operation wavelength is $\lambda = 1550$ nm, effective indices of the x-polarized even mode and the x-polarized odd mode are $n_e = 1.40458822$ and $n_o = 1.40429199$, respectively. Thus, the coupling length is $L_c = \lambda/(2|n_e - n_o|) = 2.62$ mm, which means the optical power in the DC-PCF will be entirely transferred from one fiber.
core to another after a length of 2.62 mm. For a bending DC-PCF, the coupling length is a function of the bending radius (or the bending curvature, which is reciprocal of the bending radius). Fig. 2 shows coupling length for the x-bending DC-PCF and the y-bending DC-PCF with different bending curvatures at the operation wavelength of 1550 nm. The coupling length for the y-bending DC-PCF almost remains the same when the bending curvature increases from 0 to 20 m$^{-1}$, which is due to the fact that the symmetry of the index profile (shown by Eq. (2)) in the horizontal direction for the y-bending DC-PCF. However, the coupling length for the x-bending DC-PCF decreases when the bending curvature increases from 0 to 20 m$^{-1}$, which is due to the change of the index profile (shown by Eq. (1)) in the horizontal direction for the x-bending DC-PCF. Thus, the coupling length of the DC-PCF is sensitive to the directional bending. In addition, the coupling length is also sensitive to the polarization state of the input light and the coupling length of the DC-PCF for the y-polarized light is larger than that for the x-polarized light.

As discussed above, the coupling length is an important parameter for the mode coupling which is sensitive to the bending curvature of the DC-PCF. However, the coupling length of the DC-PCF can not be simply measured by an equipment. Here we introduce a method based on spectrum measurement. For a DC-PCF with a length (z), suppose that the power of the injected light on the input side of the fiber core-A and the fiber core-B is 1 and 0, respectively. According to the conventional coupled-mode theory [69–73], the output power on the output side of the fiber core-A and the fiber core-B of the DC-PCF

![Figure 2. Coupling length for the x-bending DC-PCF and the y-bending DC-PCF with different bending curvature.](image1)

![Figure 3. Output spectra (from fiber core-B) of the 10-cm DC-PCF when the (x-) bending curvature is 0, 4, 7, 10, and 12 m$^{-1}$, respectively.](image2)
can be given by
\[P_1(z, \lambda) = \cos^2(Sz) + \cos^2(\eta) \sin^2(Sz) \] (3)
and
\[P_2(z, \lambda) = \sin^2(\eta) \sin^2(Sz), \] (4)
respectively. The maximum power transferred from the fiber core-A to the fiber core-B is
\[P_2|_{\text{max}} = \sin^2(\eta) \] (5)
which occurs at the coupling length \(z = L_c = \pi/(2S) \). Note that we have
\[S = |n_e - n_o| \pi/\lambda, \] (6)
\[S = \sqrt{\delta^2 + \kappa^2}, \] (7)
\[\tan(\eta) = \delta/\kappa, \] (8)
and
\[\delta = |n_a - n_b| \pi/\lambda, \] (9)
where \(n_a \) and \(n_b \) are the effective index of the individual fiber core-A and the individual fiber core-B, respectively. For a straight DC-PCF, we have \(\delta = 0 \) since the fiber core-A and the fiber core-B are symmetrical in the DC-PCF. Thus, Eqs. (3), (4) and (5) can be rewritten as
\[P_1(z, \lambda) = \cos^2(Sz), \] (10)
\[P_2(z, \lambda) = \sin^2(Sz), \] (11)
and
\[P_2|_{\text{max}} = 1. \] (12)

We calculate the transmission spectrum (from fiber core-A to fiber core-B) of the 10-cm DC-PCF when the (x-) bending curvature is 0, 4, 7, 10, and 12 m\(^{-1}\), respectively, which are shown in Fig. 3. The sine-like transmission spectrum is due to \(P_2(z, \lambda) \) described in Eq. (4), where \(|n_e - n_o| \) slowly varies for the operation wavelength. The period of the sine-like transmission spectrum is corresponding to the length of the DC-PCF, which does not affect the wavelength shift corresponding to the bending curvature of the DC-PCF. A blue shift of the output spectrum of the 10-cm DC-PCF together with the decrease of the maximum power transferred from the fiber core-A to the fiber core-B is observed when the bending curvature of the DC-PCF increases. This could also be indicated by the mode profiles of the even mode and the odd mode of the DC-PCF. Fig. 4 shows the mode profiles (electric field) for (a) the even mode and (b) the odd mode of the straight DC-PCF, and normalized amplitude of the electric field for (c) the even
Figure 4. Mode profiles (electric field) for (a) the even mode and (b) the odd mode of the straight DC-PCF; Normalized amplitude of the electric field for (c) the even mode and (d) the odd mode of the \(x \)-bending DC-PCF with bending curvature of 0, 4, 7, 10, and 12 \(\text{m}^{-1} \), respectively.

The dependence between the transmission spectrum of the 10-cm DC-PCF and the bending curvature indicates a method to achieve bending sensing. Fig. 5 shows the two parabola curves for the wavelength shift of the peak wavelength of the transmission spectrum (from fiber core-A to fiber core-B) of the 10-cm DC-PCF and the bending curvature for the \(x \)-polarized light and \(y \)-polarized light. Thus, a DC-PCF-based bending sensor can be achieved by injecting broadband polarized light into one fiber core of DC-PCF on one side and detecting output spectrum from another fiber core of the DC-PCF on the other side. Our calculations show that the DC-PCF-
The calculate wavelength shifts of three types of 10-cm DC-PCFs with parameters of (Λ = 2 μm and d = 1.4 μm), (Λ = 2.2 μm and d = 1.4 μm) or (Λ = 2 μm and d = 1.3 μm) for the bending curvature of 4 are 1.0 nm, 1.9 nm, and 0.9 nm, respectively. Our calculations show that DC-PCF with a larger hole pitch and a larger air hole size...
can achieve a higher sensitivity of the DC-PCF-based bending sensor, which, however may lead to larger confinement loss and smaller sensing range. The sensing range of the proposed bending sensor is limited firstly to the confinement loss of the bending DC-PCF and secondly to the broadband light source and the optical spectrum analyzer. For the proposed bending sensor based on a 10-cm DC-PCF with parameters of \((\Lambda = 2 \, \mu\text{m} \text{ and } d = 1.4 \, \mu\text{m})\) has a sensing range from 0 to 100 m\(^{-1}\), when the broadband light source and the optical spectrum analyzer can support its application.

3. DISCUSSION AND CONCLUSION

The fabrication of the DC-PCF will be easy by using the current PCF fabrication techniques available. Several multi-one PCFs have been fabricated and demonstrated [32, 42] recently. However, an imperfect fabrication of the DC-PCF will result in difficulties for bending sensing application. The operation principle of a DC-PCF-based bending sensor is due to the mode coupling between two fiber cores of the DC-PCF. When the size of a designed DC-PCF is changed during the fabrication, the working curve (parabola curve in Fig. 5) will also be changed, which may lead to a different sensitivity and sensing range. When the symmetry of the designed DC-PCF is changed during the fabrication, the zero bending curvature point in the working curve will shift. Thus, a DC-PCF-based bending sensor should be calibrated before it is practically used.

A challenging technique for the DC-PCF based sensor is how to connect the DC-PCF to the light source or the optical spectrum analyzer, since the fiber core size and the distance between the two fiber cores of the DC-PCF is too small compared with the fiber core of the single mode fiber. It may be overcome by firstly splicing a one-core PCF to the DC-PCF where the fiber cores of the one-core PCF and the DC-PCF are the same, and then splicing the single mode fiber to the one-core PCF. Chiang et al. has also provided useful method for the connection between the PCF and the single mode fiber [74].

Considering the index change effect for pressure, strain, and temperature, the DC-PCF can also be designed for pressure sensing, strain sensing, temperature sensing. However, previously reported works have shown that the PCF-based sensor is not very sensitive to temperature [49, 50] and pressure [47, 48, 54]. Only extreme high temperature or high pressure can be an effective external perturbation for the proposed DC-PCF-based bending sensor. In most instances, the DC-PCF-based bending sensor can work well without external perturbations.
In conclusion, we have analyzed a bending DC-DCF with two fiber cores separated by one air hole in the cross-section. The mode coupling of two fiber cores inside the DC-PCF has been introduced by considering the fiber bending. Simulations have shown we can achieve bending sensing by measuring the wavelength shift of the output spectrum at one fiber core on output side of the DC-DCF with a fixed length when the broadband polarized light is injected into another fiber core on input side of the DC-DCF. The performance of a 10-cm DC-PCF-based bending sensor has been presented.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China under project (No. 61007029), The Projects of Zhejiang Province (No. 2011C21038 and No. 2010R50007) and the Program for Science and Technology Innovative Research Team in Zhejiang Normal University.

REFERENCES

7. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, “A Comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber

