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Abstract—The propagation of light in an anisotropic impedance-
matched metamaterial is studied in the frame of geometrical optics.
We prove that directions of fields D̄, B̄ and v̄ (ray velocity) are a triad
of conjugate directions with respect to the inverse relative dielectric
permittivity tensor and constitutes a local basis, whose reciprocal one
is formed by directions of Ē, H̄ fields and wave-vector k̄. Consequently,
both dual bases are intrinsically related to the physical properties of
medium. We have identified these bases with direct and reciprocal
bases of a curvilinear coordinates system, showing that physics defines
geometry. This identification provides a powerful tool to solve two
kinds of problems (direct and inverse ones) that currently arise: In
direct problems, medium properties are given and it suffices to know
ε̃ = µ̃ tensor at every point, to obtain the wave structure. In
inverse problems, medium properties must be found for the rays to
propagate along prescribed trajectories. The procedure is applied to
an illustrating example.

1. INTRODUCTION

When dealing with laws of propagation of monochromatic plane
waves, the so called “optical transformation theory” in stating an
equivalence principle between electromagnetic parameters of a physical
medium expressed in Cartesian coordinates and their analogues in
vacuum obtained from a curvilinear coordinate transformation, puts in
correspondence the Euclidean inhomogeneous and anisotropic physical
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space, with another homogeneous, isotropic and matter free space, but
endowed with a locally flat metric. Thus, the ray trajectory in the
physical medium is associated with a geodesic curve in virtual space.

Every analogy in Physics is a guide that enable us to predict
hidden relations and harmonies. Thus, if we consider that stream lines
in irrotational fluid motion are the analogues of rays in geometrical
optics, the invisibility problem in optics becomes similar to that of
the flux of a fluid stream in the presence of an obstacle. Analogy
and principle of equivalence allow, in flat problems, to recover the old
theory of complex potential (conformal mapping) and, consequently,
mathematical analysis is considerably simplified [1].

Nevertheless,“geometrical physics” in these media can be
understood, in our opinion, not only as a direct consequence (“all
occurs as if”) of the invariance of Maxwell equations in coordinate
transformations [2–4], but anything else: physical properties of a
medium intrinsically define the most adequate geometry.

In general, at visible frequencies (430–790 THz), natural media
exhibit a homogeneous and isotropic magnetic behaviour together
with an inhomogeneous and anisotropic dielectric one. Certain
metamaterials (to which theories developed and described in this
paper can be applied) when subjected to external actions, obey linear
constitutive equations: D̄ = ε0ε̃Ē; B̄ = µ0µ̃H̄, with equal relative
permittivity and permeability tensors, (ε̃ = µ̃). The specificity of
behaviour laws enable us to endow the space with a metric biunivocally
linked to the metamaterial physics. These properties can not be
applied to natural media with dielectric anisotropy and magnetic
isotropy [5].

In the present alternative treatment, it has been proved that in
any point of these metamaterials (in absence of charges and currents)
the wave front (or the ray) is getting distorted in such a way that
D̄, B̄ fields and ray velocity v̄ (or Ē, H̄ and k̄) constitute a local
basis of conjugated directions with respect to relative permittivity or
permeability tensor evaluated at that point.

2. ALTERNATIVE ANALYTICAL MODEL

In this section, from relative permittivity (or permeability) tensor
and from laws of evolution in the medium, we are intended to
establish vector bases consisting of conjugated directions. These bases,
intrinsically related to physical properties, are put in correspondence
with local vector bases that, in curvilinear coordinates, are going to
define the medium geometry.
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2.1. Conjugate Directions

Let Ĩ be a symmetric tensor of second order, with components Iij

referred to a Cartesian reference frame {̄i1, ī2, ī3} and let ν̂ and µ̂ be
any two directions. The bound vector to ν̂ by the tensor [6] is vector
Γ̄ν defined as Γ̄ν = Ĩ · ν̂.

The intrinsic component, σν of vector Γ̄ν is equal to its projection
onto vector ν̂ in such a way that σν = Γ̄ν · ν̂. The projection of vector
Γ̄ν onto µ̂ is Γ̄ν · µ̂ and as a consequence of Cauchy theorem [7] we
arrive to: Γ̄ν · µ̂ = Γ̄µ · ν̂. Two directions ν̂ and µ̂ are named conjugate
if [8, 9]:

Γ̄ν · µ̂ = Γ̄µ · ν̂ = 0 (1)

Figure 1 provides a simple geometrical interpretation: A relevant
property of Cauchy quadric (defined by σν = const) [7] is that its
normal at every point is collinear with bound vector Γ̄ν for any
direction ν̂. The orthogonality of vectors Γ̄ν and µ̂ implies the relation
of conjugation.
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Figure 1. Cauchy’s quadric associated with a second-order tensor Ĩ.
The orthogonality of vectors Γ̄ν = Ĩ · ν̂ and µ̂ implies that unit vectors
ν̂ and µ̂ are conjugate directions. Vector µ̂ lies in plane π2 parallel to
the tangent plane of the ellipsoid at “P”.

It must be noted that principal directions of a tensor are also
conjugate directions. Conjugation arises as a broader concept than
that of principal directions (a particular case, where Γ̄ν is collinear with
ν̂), but keeping the algebraic property of diagonalisation of tensors, if
expressed in covariant components.
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2.2. Laws of Evolution

The double Fourier transform f̄(ω, k̄) of a vector field F̄ (t, r̄), function
of both time and position is:

f̄
(
ω, k̄

)
=

∫
dtd3r̄F̄ (t, r̄)ei(ωt−k̄·r̄) (2)

and it can be shown that [10]:
∂F̄

∂t
→ −iωf(ω, k̄); ∇ · F̄ (t, r̄) → ik̄ · f(ω, k̄) (3)

∇× F̄ (t, r̄) → ik̄ × f(ω, k̄) (4)
Applying these expressions to Maxwell equations for source-free media,
we have:

k̄ × Ē = ωB̄; k̄ × H̄ = −ωD̄ (5)
k̄ · D̄ = 0; k̄ · B̄ = 0 (6)

Bearing in mind that wave vector k̄ (wave-front gradient) and ray
velocity v̄ (collinear with Poynting vector), are given by [11]:

k̄ =
(D̄ × B̄)ω

W
; v̄ =

(Ē × H̄)
W

(7)

(where W is the electromagnetic energy density), from Maxwell
equations [12] or from Expression (7), the following equations in v̄-
domain arise:

v̄ × B̄ = −Ē; v̄ × D̄ = H̄ (8)
v̄ · Ē = 0; v̄ · H̄ = 0 (9)

In order to complete the above equations, we add some specific
constitutive relations of artificial media (metamaterials), where relative
permittivity tensor (ε̃ij) and relative permeability one (µ̃ij) are
identical when referred to the same vector basis; consequently the
identity holds also for inverse tensors ε̃−1

ij = µ̃−1
ij = τ̃ij (in what follows,

τ̃). In other words,

D̄ = ε0ε̃ · Ē; Ē =
τ̃ · D̄
ε0

; B̄ = µ0ε̃ · H̄; H̄ =
τ̃ · B̄
µ0

(10)

It is immediate to state that in these media, electromagnetic energy
density is given by W = Ē · D̄ = B̄ · H̄; i.e., electric energy density
coincides with magnetic one, and consequently, k̄ · v̄ = ω.

Under the assumptions of propagation of monochromatic (ω
= constant) plane waves in the absence of current densities and
charges, Equations (5), (6), (8), (9) and (10) enable us to derive some
different geometrical structures and their corresponding physical laws
of evolution.
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2.2.1. Geometrical Structure of Fields

a) In order to describe the laws of evolution of fields, we choose a local
base (P, ēi/{i = 1, 2, 3}), consisting of vectors ēi, collinear with D̄, B̄
fields and v̄ (ray velocity), respectively. We will prove that this basis
is conjugated with respect to the tensor τ̃ . The chosen vectors are:

ē1 =
D̄

|D̄| ; ē2 =
B̄

|B̄| ; ē3 =
v̄

|v̄| ; with ēi = hiûi; h1 =h2 =h3 =1 (11)

and
√

g = (ē1 × ē2) · ē3. Equations (8) and (9) prove that Ē (H̄) is
orthogonal to B̄(D̄) and v̄, and constitutive laws (10) prove that Ē is
collinear with Γ̄u1 = τ̃ · û1 (and H̄ is collinear with Γ̄u2 = τ̃ · û2). Thus,

ε0Ē

|D̄| = τ̃ · û1 = Γ̄u1 ;
µ0H̄

|B̄| = τ̃ · û2 = Γ̄u2 (12)

From the above mentioned orthogonality relations, Equation (12)
and Cauchy theorem, we can deduce that Γ̄u1 ·û2 = Γ̄u1 ·û3 = Γ̄u2 ·û1 =
Γ̄u3 · û1 = Γ̄u2 · û3 = Γ̄u3 · û2 = 0. In other words, the electric
displacement field D̄, the magnetic induction field B̄ and ray velocity
v̄ locally propagate along conjugated directions of the inverse relative
permittivity tensor of the medium. From the above analysis, it yields
the choice of the reciprocal local base (P, ēj/{j = 1, 2, 3}), that consists
of vectors collinear with the bound vectors to directions û1, û2, û3 and
defined as:

ēj =
Γ̄uj

hjτj
=

τ̃ · ēj

h2
jτj

−→ it yields ēi · ēj = δj
i (13)

with τj = Γ̄uj
· ûj (τj coincide with the eigenvalues of the tensor, when

vectors ûi are orthogonal).
In these frames of reference (bases ēi or ēi), fields have only a

component (covariant or contravariant). Thus,

D̄ = D1ē1; B̄ = B2ē2; v̄ = v3ē3; Ē = E1ē
1; H̄ = H2ē

2; (14)

with D1 = |D̄|/h1; B2 = |B̄|/h2; v3 = |v̄|/h3; E1 = |D̄|h1τ1/ε0;
H2 = |B̄|h2τ2/µ0, and the inverse relative permittivity tensor (in
covariant components) is written as:

τ̃ = τij ē
i ⊗ ēj with τij = h2

i τjδ
j
i (15)

With respect to the physical meaning of τ1 and τ2, we retain
the expressions of electric and magnetic energy densities in a linear
medium [11, 13]:

We =
Ē · D̄

2
; Wm =

H̄ · B̄
2

(16)
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Since τj = Γ̄uj
· ûj , we can write:

τ1 =Γ̄u1 · û1 =
ε0Ē · D̄
|D̄|2 =

We

W 0
e

; τ2 = Γ̄u2 · û2 =
µ0H̄ · B̄
|B̄|2 =

Wm

W 0
m

(17)

Coefficient τ1 is the ratio between the electric energy density in
the medium, We, and the electric energy density, W 0

e , carried by the
wave if propagation were in vacuum and obviously, it coincides with
the inverse relative permittivity associated with the û1 direction. The
same applies to τ2, but referred to magnetic energy density.

In order to know the physical meaning of every vector of the
basis that describe covariant components of fields, it remains only to
investigate what vector ē3 represents. From (7), (13), (14) and taking
into account the linear character of operator τ̃ , we can write,

τ̃ ·(Ē×H̄)=E1H2τ̃
(
ē1×ē2

)
=E1H2ε

123τ̃ · ē3 =
E1H2√

g
h2

3τ3ε
312ē1 × ē2

=
h2

1h
2
2h

2
3τ1τ2τ3

ε0µ0g
D1B2 (ē1×ē2)=

h2
1h

2
2h

2
3τ1τ2τ3

ε0µ0g

(
D̄×B̄

)
(18)

where components ε123 = ε312 of Levi-Civita tensor are equal to
1/
√

g. From Equations (7), (13), (18), and taking into account that
ε0µ0 = 1/c2, we can write:

τ̃ · v̂ =
τ1τ2τ3h

2
1h

2
2h

2
3c

2

gω
k̄ =⇒ ē3 =

τ1τ2h
2
1h

2
2c

2

gω|v̄| k̄ (19)

We have shown that vector ē3 has the direction of the wave-vector
k̄, and then k̄ = k3ē

3. To summarize,

D̄=D1ē1; B̄=B2ē2; v̄=v3ē3; Ē =E1ē
1; H̄ =H2ē

2; k̄=k3ē
3 (20)

Then, vectors of the reciprocal base ēi lie along Ē, H̄ and k̄
directions. There is an intrinsic geometrical structure, associated with
propagation of plane waves in these media in such a way that the
Euclidean space is endowed, at every point P , with two dual bases
defined from physical properties of the medium. Table 1 and Figure 2
show this geometrical structure.

Table 1. Direct base vectors and reciprocal base vectors obtained
from tensor τ̃ .

Direct basis Reciprocal basis
ē1 collinear with D̄ ē1 colllinear with Ē

ē2 collinear with B̄ ē2 collinear with H̄

ē3 collinear with v̄ ē3 collinear with k̄
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Figure 2. Local reciprocal bases ēi and ēi associated with the
structure of a light plane wave propagating through an anisotropic
impedance-matched medium.

b) Irrespective of anything given above, we may assume that the
space is described by a system of curvilinear coordinates, q1, q2, q3

related to Cartesian ones, x1, x2, x3 through the equations:

qj = qj(x1, x2, x3) ⇔ xj = xj(q1, q2, q3) with j = 1, 2, 3, (21)

that allow us to define, if the transformation is admissible [7], two
reciprocal local bases at any point P as:

Direct basis: (P, ēj)/ēj =
∂r̄

∂qj
=

k=3∑

k=1

∂xk

∂qj
īk with j = {1, 2, 3} (22)

Dual basis: (P, ēj)/ēj = ∇qj =
k=3∑

k=1

∂qj

∂xk
īk with j = {1, 2, 3} (23)

where reciprocity relation ēi · ēj = δj
i holds. Transformation rules

between base vectors are given by ēi = gij ēj , ēi = gij ē
j , where

gij = ēi · ēj is the metric tensor.
This geometry, defined by metric tensor gij , suggests to identify

local bases (11) and (13), intrinsically related to the physical properties
of medium, with (22) and (23) of the just described arbitrary
curvilinear coordinates system. From this correspondence, physics
defines geometry.

Assuming the equality of local bases, we have a powerful tool to
solve two kinds of problems that currently arise: direct and inverse
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ones. For direct problems, medium properties are given and it suffices
to know ε̃ = µ̃ tensor at every point, because the method provides
the wave structure. In inverse problems, we must find the medium
properties for the rays to propagate along prescribed trajectories. If ray
trajectory is given, i.e., geometry is known, we can determine medium
properties τ̃ (See Section 3: Application).

2.2.2. Ray Evolution and Fermat Principle

Unlike natural optical anisotropic media (with dielectric anisotropy
and magnetic isotropy), in these media with ε̃ = µ̃, there is an only
mode of propagation and an only ray velocity v̄, for every wave-vector
k̄.

From Equation (19) and since in this case, k̄ · v̄ = ω, we obtain,

v̄ · τ̃ · v̄ =
τ1τ2τ3h

2
1h

2
2h

2
3c

2

g
(24)

In accordance with the definition of ray index of refraction nr [11] as
nr = c/v, and remembering that v̄ is tangent to the ray trajectory:
v̄ = vdr̄/dl = vt̄, we can write:

n2
r =

c2

v2
=

g

h2
1h

2
2h

2
3τ1τ2τ3

(û3 · τ̃ · û3) (25)

We have just found the expression of the ray index as:

nr =
√

g

h1h2h3

(
t̄ · τ̃

τ1τ2τ3
· t̄

)1/2

(26)

with û3 ≡ t̄ = dr̄
dl with |dr̄| = dl. Since nr is a function both of

position r̄ and of the direction of vector dr̄/dl, Equation (26) shows
the complexity of light propagation in inhomogeneous and anisotropic
media, even for the materials in discussion, for which there is an
only mode of propagation, and we can solve for nr. Unlike the
isotropic case, the distance between two infinitely near points depend
on their position and also on their relative orientation. Consequently,
equations of evolution can be found as geodesics in a Finsler space [14],
in which the line element is given by ds = nr(r̄, dr̄/dl)dl. When
values of nr are substituted into the Fermat‘s variational principle in
order to use Hamiltonian and Lagrangian formalism, a problem arises
because conventional Legendre transform, would obtain an identically
vanishing Hamiltonian from Lagrangian, which is homogeneous of
degree one in dr̄/dl. Nevertheless, Fermat principle is invariant under
reparameterising, then parameter “arc length” l may be substituted
by optical path, in such a way that dl = nrdσ [15], and a non-singular
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Lagrangian arises as L = n2
r(r̄, dr̄/dσ). Consequently, equations of

evolution can be found as extremals of the functional,

δ

∫
n2

rdσ = 0 (27)

where distance is measured by travel time (optical path).

3. APPLICATION

Let us illustrate the above theory with an application. Since direct
problems have been more discussed, we deal with an inverse one:
Which optical properties must the medium have for light-rays to
propagate along a prescribed trajectory? For instance, we want to
characterize medium properties in such a way that every plane wave
that propagates along an axis, say z (wave vector k̄ parallel to z axis),
yields a ray describing an helicoidal trajectory of axis z. For that
purpose, we introduce the following coordinates system (See Figure 3).

q1 =
z

θ
; q2 = %; q3 = z (28)

expressed in cylindrical coordinates: %, θ, z. We see that coordinate
plane q3 = constant describes the wave-front and coordinate line q3 is
along the desired ray.

Vectors of the direct basis are:

ē1 = ∇q1 = − z

%θ2
ûθ +

1
θ
ûz; ē2 = ∇q2 = û%; ē3 = ∇q3 = ûz (29)

2

2

2

3

e

line q

line q

q = const.

q = const.3

Figure 3. Coordinate surfaces and coordinate lines of curvilinear
coordinates system (q1, q2, q3), defined as q1 = z/θ; q2 = %; q3 = z,
where cylindrical coordinates %, θ and z are used. In this case,
coordinate plane q3 = constant describes the wave-front and coordinate
line q3 is along the desired ray.



158 Bellver-Cebreros and Rodriguez-Danta

and fundamental metric tensor gij can be expressed in contravariant
and covariant components, respectively, as:

gij =




z2

%2θ4 + 1
θ2 0 1

θ

0 1 0
1
θ 0 1


 ; gij =(gij )−1 =




%2θ4

z2 0 −%2θ3

z2

0 1 0
−%2θ3

z2 0 1+ %2θ2

z2


 (30)

From transformation rule ēi = gij ē
j , vectors of the dual base ēi are

obtained:

ē1 = −%θ2

z
ûθ; ē2 = û%; ē3 =

%θ

z
ûθ + ûz (31)

Since τ̃ = h2
i τiδij ē

i ⊗ ēj , tensor τ̃ can be expressed in cylindrical
coordinates as:

τ̃ =




τ2 0 0
0 τ1 −ατ1

0 −ατ1 τ3 + α2(τ1 + τ3)




û%,ûθ,ûz

(32)

where α = %θ/z. Substitution into Equation (25) becomes:

n2
r =

α2θ2

α2θ2(1 + α2)τ1τ2τ3
t̄ · τ̃ · t̄; where t̄ =

dr̄

dl
=




d%
dl

1
%

dθ
dl

dz
dl


 (33)

After some calculations, we get:

n2
r =

z2

(z2+%2θ2)

{
τ2

(
d%

dl

)2

+ τ1

(
1

%

dθ

dl
− %θ

z

dz

dl

)2

+τ3

(
1+

%2θ2

z2

)(
dz

dl

)2
}

(34)

Fermat principle would lead to the already known solution: û3 ≡ t̄.
Thus,

û3 =
1√

1 + α2

{ 0
α
1

}
≡ dr̄

dl
=





d%
dl

%dθ
dl

dz
dl





(35)

So, we get: % = a, θ = θ, and z = bθ, where ab constants, and the
equation of a helix is reobtained. Then, properties of the medium are
given by ε̃ = τ̃−1, and so,

ε̃ =
1

(z2 + %2θ2)




1 0 0
0 τ1%2θ2+τ3(z2+%2θ2)

τ1τ3
%θz

0 %θz z2

τ3




û%,ûθ,ûz

(36)
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4. CONCLUSIONS

We have considered the problem of propagation of light plane waves in
an anisotropic impedance-matched metamaterial, under an alternative
approach, based on the concept of conjugacy of directions with respect
a tensor. We have shown that directions of fields D̄, B̄ and v̄ (ray
velocity) are a triad of conjugate directions with respect to the inverse
relative dielectric permittivity tensor and constitutes a local basis,
whose reciprocal one is formed by directions of Ē, H̄ fields and wave-
vector k̄. We noticed that there exists an intrinsic geometrical structure
associated with propagation of plane waves in these media in such a
way that the space is endowed, at every point P , with two reciprocal
bases defined from physical properties of the medium. This structure
is similar to that used in the study of crystal structures.

Since propagation of electromagnetic waves are always described
in orthogonal frames, where there is no distinction between covariant
and contravariant vector components, the different tensor nature of
vector fields (Ē and D̄) remains masked (the same for B̄ and H̄). We
realized that these fields, together with k̄ and v̄ have only a component
(covariant or contravariant) in these dual bases.

We have put into correspondence dual bases with direct and
reciprocal bases of a curvilinear coordinates system, showing that
physics defines geometry. This identification provides a powerful tool
to solve current direct and inverse problems. In direct problems,
medium properties are known and behaviour of rays is investigated.
We have shown that it suffices to know ε̃ = µ̃ tensor at every point, to
obtain the wave structure.

Of more interest are inverse problems (for instance, in dealing
with perfect lenses, wave-guide propagation, and so on), where medium
properties must be found for the rays to propagate along prescribed
trajectories. The procedure has been applied to an illustrating
example.
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