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1. Introduction

In this paper we will introduce a new approximate method for
solving large scale two-dimensional electromagnetic boundary value
problems over perfect electric conductors PEC. Specifically, we will
expand the Green’s function in the kernel of the electric field integral
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equation EFIE [3] as a perturbation series with respect to the arclength
variable s . The series is restricted by demanding that the first term is
Toeplitz [15] (Toeplitz operators are also known as cyclic or convolution
operators) with respect to s . The approximation is achieved by using
the series form of the Green’s function, truncated after the Toeplitz
term, in the EFIE. The reasoning behind such a scheme lies in the
computational efficiency of inverting Toeplitz operators. In particular,
Toeplitz operators can be inverted, using the fast Fourier transform
FFT [6] thus reducing an O(N3) operation, where N is the number
of discretizations along the scatterer, to an O(N logN) operation.
There is also a saving in core storage from O(N2) to O(N) .

In section 1, beginning with the Electric Field Integral Equation
we show how this can be expressed as a perturbation series where
the first term is a convolution integral. In section 2 we examine the
conditions for convergence of the series and obtain a bound for the
neglected perturbation terms when using the GFPM. In section 3 we
consider how best to choose the integral transformation and show how
this may be done to minimize the error in an average sense. In section
4 we show that the method is reciprocal and in section 5 the GFPM is
compared to the Kirchhoff and height perturbation methods. Finally,
some numerical examples are presented along with expreimental data
for UHF propagation over irregular terrain.

We would like to mention another different method due to Uru-
sovskii [17] who used a convolution to calculate scattering from periodic
surfaces. He considered sinusoids with very small maximum slope such
that the surface normal at every point could be approximated by the
normal to the mean plane. In essence the surface was projected onto
the mean plane but the boundary condition was not.

In an earlier paper [9] presented at the ICAP’95 conference, the
authors outlined the the Green’s Function Perturbation Method ap-
plied to UHF propagation over undulating terrain. The purpose of this
paper is to describe the Green’s Function Perturbation Method for
electromagnetic scattering in greater detail.

In this chapter the acronym PEC always denotes that the scat-
terer is a pefect electrical conductor. In the main we deal with open
surfaces. Also, since in reality, the surface current will often be negligi-
ble outside a certain finite region, in there cares we can use a function
defined over a finite domain to represent the surface without loss of
accuracy.
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2. Integral Transformation

Referring to the geometry in Figure (1) the EFIE for a PEC is

Es( ρρρ ) = −kη
4

∫
S
J( ρρρ ′)H(2)

0

(
k| ρ− ρρ− ρρ− ρ ′|

)
dp′ (1)

where J( ρρρ ′) is the induced current on the PEC surface,
H

(2)
0 (k| ρ− ρρ− ρρ− ρ ′|) is a Hankel function of the second kind of order zero

and Es is the scattered electric field.

Figure 1. Scattering Geometry

The Green’s function for the EFIE is the Hankel function

H
(2)
0 (k| ρ− ρρ− ρρ− ρ ′|) (2)

where ρρρ and ρρρ ′ are vectors representing points of integration and
points of contribution, respectively, in the integrand of (1) and k =
β−jα is the propagation constant. The propagating medium is chosen
to be slightly absorptive so that the solution Es(ρ) is of order e−α/ ρρρ

as ρρρ →∞ (i.e., the radiation condition at infinity is guaranteed).
In Cartesian coordinates the surface S is represented in terms of

the single variable x as
z = ξ(x) (3)
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which is assumed to be continuous, bounded and differentiable, and we
define the vector ρρρ which traces the surface S as

ρρρ = x x̂̂x̂x + ξ(x) ẑ̂ẑz (4)

The distance between any two points, ρρρ and ρρρ ′ , on the surface is
given by

| ρρρ − ρρρ ′| =
√

(x− x′)2 + (ξ(x)− ξ(x′))2 (5)

The independent variable x can be changed into a function of the
variable of integration; the arclength s , i.e., x → f(s) . This may be
expressed as

s =
∫ x

0

√
1 +

(
dξ(x)
dx

)2

dx (6)

Equations of the form (6) have closed form solutions only for
certain classes of functions ξ but all can be solved numerically. The
actual values for s are not of critical importance for this analysis.

We continue by introducing a function g(x) . This function is
chosen by some means to best approximate the Euclidean distance
function d (s, s′) such that

g(s− s′) ≈
√

(f(s)− f(s′))2 + (ξ(f(s))− ξ(f(s′)))2 = d
(
s, s′

)
(7)

where we have replaced x by f(s) . It is clear that d(s, s′) is a function
of position and that g(s − s′) is a function of arclength between two
points ρ and ρ′ described by s and s′ . The properties of g(x) are
chosen so as to match those of d(s, s′) . Explicitly they are as follows;

• The distance between two points in the plane is real so g(x) will
be real.

• The distance between two points is greater than or equal to zero
so g(x) will be positive.

• The distance from A to B is the same as from B to A so g(x)
will be even.

• The distance function defined along any continuous differentiable
surface is differentiable so g(x) will be differentiable.

With some straightforward algebraic manipulation we may write
the Hankel function as

H
(2)
0

(
kg(s− s′) [1 + T ]

1
2

)
, (8)
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where
| ρ− ρρ− ρρ− ρ ′| = g

(
s− s′

)√
1 + T (9)

and

T = T (s, s′) = −1 +
[
f(s)− f(s′)
g(s− s′)

]2

+
[
ξ (f(s))− ξ(f(s′))

g(s− s′)

]2

(10)

We proceed by introducing the restriction that

|T | < 1 (11)

This presents a further limitation on the set of permissible functions
g(x) . Equation (11) will be satisfied when g(s−s′) is greater than half
of d(s, s′) and allows us to remove the square root dependency in the
argument of the Hankel function by expanding the term (1 + T )1/2 in
(8) into a binomial series giving

H
(2)
0 (k| ρ− ρρ− ρρ− ρ ′|) = H(2)

0

(
kg(s− s′) + kg(s− s′)B

)
, (12)

where

B = B
(
s, s′

)
=
∞∑
m=1

(
1/2
m

)
Tm =

√
1 + T − 1 (13)

Equation (12) can now be expanded as a Taylor series about kg(s−s′)
giving

H
(2)
0

(
k|ρ− ρρ− ρρ− ρ′|

)
=H(2)

0

(
kg(s− s′)

)
+

∞∑
n=1

[kg(s− s′)B]n

n!
H

(2)(n)

0 (kg(s− s′))
(14)

where
H

(2)(n)

0 (x) =
dn

dxn
H

(2)
0 (x) (15)

Replacing the Hankel function in (1) we have

Ei(s′) =
kη

4

∫
S
J(s′)H(2)

0

(
kg(s− s′)

)
ds′+

kη

4

∫
S
J(s′)

∞∑
n=1

[kg(s− s′)B]
n!

n

H
(2)(n)

0

(
kg(s− s′)

)
ds′

(16)
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We have thus created a series formulation for the EFIE. We choose
to take the first term and use it as an approximation. We denote the
approximate current density so calculated by Jc = Jc(f(s′), ξ(f(s′))) .
It is also clear that the first term approximation is a convolution in the
scalar variable s . This allows us to calculate Jc by means of a Fourier
transform technique which is computationally O(N logN) [6].

Jc = F−1


 F

[
Ei(s′)

]
F

[
H

(2)
0 (kg(s′))

]

 (17)

where F denotes Fourier transform and F−1 inverse Fourier trans-
form. Any method for calculating the approximate current distribution
on the surface of a PEC by equation (17) will henceforth be referred
to as the Green’s function perturbation method GFPM. It is clear
that equation (17) defines a class of solution methods defined by the
function g .

3. Condition for Convergence

To investigate the region of validity of the approximation Jc to
the Helmholtz integral consider the iterative solution to the perturba-
tion problem described in equation (16) where the first term (the zeroth
order solution) is given by the GFPM. For the GFPM to represent a
sufficiently accurate solution to equation (16) requires the contribu-
tions to J , the exact current, from the the remaining series terms to
be negligible.

We shall, for this purpose, exploit the more compact notation of
linear operators, defining:

LJ = (A+ C) J = Ei (18)

where the approximation operator is

A =
kη

4

∫
s′
H

(2)
0 (kg(s− s′))ds′ (19)

and the correction operator is

C =
kη

4

∫
s′

∞∑
n=1

(kg(s− s′)B(s, s′))
n!

n

H
(2)(n)

0 (kg(s− s′))ds′ (20)
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The operators A and C are bounded (by the fact that L is) and
are continuous. A solution J to the integral equation exists because
L is complex valued and non-singular [10]. The system described in
equation (18) describes a Fredholm [8] integral equation of the first
kind. We can easily transform it to a Fredholm integral equation of
the second kind by multiplying across by the inverse of the operator
A . We can show this explicitly by multiplying (18) by A−1 to give

(
I +A−1C

)
J = A−1Ei (21)

which is a Fredholm equation of the second kind. The unknown J can
thus be found if we can find the operator

(
I +A−1C

)−1 . If ‖A−1C‖ <
1 , where ‖ · ‖ is any operator norm, this operator can be expanded,
using the operator form of the Binomial series, in a power series as,

I − A−1C +
(
A−1C

)2 − . . .+
(
A−1C

)n − . . . (22)

which is absolutely convergent 1 . An iterative scheme solving this for
unknown J is

Jn+1 = −A−1C Jn +A−1 Ei (23)

The series (23), is called the Neumann or Born series. The condition
for convergence is method driven and, therefore, the fact that a solu-
tion exists does not guarantee convergence. In terms of the individual
operator norms we have the condition for convergence

‖C‖
‖A‖ < 1 (24)

In equation (24) ‖A‖ , which is fixed by a choice of g , is bounded
above by ‖L‖ and is only zero when L = 0 . Thus, to determine the
functions which need to be minimized in order to get a sufficiently
small contribution from perturbation terms beyond the GFPM term
we will bound the term CJc from equation (24).

Consider the integral CJc defined by

CJc = −kη
4

(I1 + I2) (25)

1 A series
∑

n an is absolutely convergent if the series
∑

n ‖an‖ is
convergent.
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with

I1 =
∫
kg(s−s′)≤1

Jc

∞∑
n=1

(kg(s− s′)B(s, s′))n

n!
H

(2)(n)

0 (kg(s− s′)) ds′

(26)
representing contributions in the region local to an integration point,
i.e., kg ≤ 1 and

I2 =
∫
kg(s−s′)>1

Jc

∞∑
n=1

(kg(s− s′)B(s, s′))n

n!
H

(2)(n)

0 (kg(s− s′)) ds′

(27)
representing regions away from integration points. We wish to find a
bound for CJc and thus indicate the terms that need to be minimized
for a valid approximation to be obtained. It can be shown (Appendix
8) that ∣∣∣∣ dndxnH(2)

0 (x)
∣∣∣∣ ≤




∣∣∣√ 2
πxe
−jx

∣∣∣ , x > 1
4
πγ |x−1| , x ≤ 1

(28)

where γ is Euler’s constant [4].

3.1. A Bound for I2

We will consider I2 first. To begin we note that Jc can be
bounded by its least upper bound lub 2

Jmc = lub |Jc| (29)

the two-dimensional function B(s, s′) can be bounded by a cyclic func-
tion Bm(s− s′) defined by

Bm(s− s′) = max
s

[B(s, s− s′)] (30)

which is symmetric about each integration point s , and that the ex-
ponential function is defined by

ex =
∞∑
n=0

xn

n!
(31)

2 A number x is a lub of A if; x is an upper bound of A ; y is
an upper bound of A and x ≤ y∀y .
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Identities (29) and (30) allow us to bound |I2| by

|I2| ≤
∫
kg(s−s′)>1

Jmc

∞∑
n=1

(kg(s− s′)B(s, s′))
n!

n

√
2

πkg(s− s′)e
−βg(s−s′)e−αg(s−s

′) ds′
(32)

In equation (32) exp (−βg(s− s′)) / [kg(s− s′)]−1 can be replaced
by one because, by definition, kg(s − s′) is greater than one and
exp (−βg (s− s′)) is always bounded by one. Now, using the defi-
nition of e , the exponential function, in equation (32) gives

|I2| ≤ Jmc
√

2
π

∫
kg(s−s′)>1

[eβg(s−s
′)Bm(s−s′) − 1]e−αg(s−s

′)ds′ (33)

It is clear that the right hand side of equation (33) is bounded for the
following two cases

βBm(s− s′)− α ≤ 0 (34)

and
|βg(s− s′)Bm(s− s′)| < 1 (35)

We note that for Bm(s− s′) = 0 the bound is trivially zero. Equation
(35) tells us that |Bm(s − s′)| must be sufficiently small everywhere,
while equation (34) only requires that Bm(s − s′) be negative every-
where if it is to be valid for all attenuation factors α . From (13) we
have the limits for |Bm(s− s′)| as

−1 < |Bm(s− s′)| <
√

2− 1 (36)

We will first look at the case described by equation βBm(s−s′)−α ≤ 0 .
Extending the bounds of integration to plus and minus infinity for the
function (33), we have

|I2| ≤ 2kJmc

√
2
π

∫ g(s−s′)=∞

g(s−s′)=0
[eβg(s−s

′)Bm(s−s′) − 1]e−αg(s−s
′)ds′ (37)

where the constant 2 appears for the symmetry in the integral. Equa-
tion (37) is a generalized Fourier integral [5] and can be solved asymp-
totically [18] (using integration by parts). This gives as an upper bound
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for |I2|

|I2| ≤ 2Jmc

√
2
π

[
1

d
ds′ [(βBm(s− s′)− α)g(s− s′)]|s′=0

+

+
1

d
ds′ [αg(s− s′)]|s′=0

]

(38)
Performing the same steps with the case described by |βg(s−s′)Bm(s−
s′)| < 1 we find the same bound for |I2| . The bound in (38) suggests
that d

ds′ [βBm(s − s′)g(s − s′)] should be minimized for fast method
convergence of the perturbative scheme and validity of the one term
solution.

3.2. A Bound for I1

Returning to I1 we now bound this integral.

|I1| =
∫
kg(s−s′)≤1

Jc

∞∑
n=1

(kg(s− s′)B(s, s′))
n!

n

H
(2)
0 (kg(s− s′)) ds′ (39)

Again, using the asymptotic bound for the Hankel function (28) (this
time for small argument) and the bound Jmc for Jc we have

|I1|

≤ Jmc
4
πγ

∫
kg(s−s′)≤1

∞∑
n=1

(kg(s− s′)B(s, s′))
n!

n (
1

kg(s− s′)

)n

n! ds′

≤ Jmc
4
πγ

∫
kg(s−s′)≤1

1
1−BM

− 1 ds′

(40)
where we have defined

BM = max
s,s′

B(s, s′) (41)

Thus an upper bound for I1 is

Jmc
4
πγ

[
1

1−BM
− 1

] ∫
kg(s−s′)≤1

ds′ = Jmc
4
πγ

[
1

1−BM
− 1

]
2∆s

(42)
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where ∆s is a constant dependent on k and g . In order to minimize
|I1| we require BM to be as small as possible in the domain kg(s −
s′) ≤ 1 .

3.3. A Bound for the Neglected Perturbation Terms
when using the GFPM

Using the upper bounds (42) for I1 and (38) for I2 we can bound
the neglected perturbations terms CJc = −kη/4 (I1 + I2) , when using
the GFPM, by

‖CJc‖ ≤ −
kη

4
2

[
Jmc

4
πγ

[
1

1−BM
− 1

]
∆s +

Jmc

√
2
π

[
1

d
ds′ [(βBm(s− s′)− α)g(s− s′)]|s′=0

+

+
1
d
ds′

[αg(s− s′)]|s′=0

]] (43)

We notice immediately that as the attenuation factor α reduces
we need to decrease the value of B(s, s′) i.e., restrict the set of surfaces
for which the one term approximation is valid. We have shown that
convergence of the method to the true current J is dependent on
the value ‖CJ‖ and that this value must be less than one. Thus the
perturbative solution is absolutely and uniformly convergent for BM
and d

ds′ [βBm(s− s′)g(s− s′)] sufficiently small.

4. Choosing g(x)

We have shown that for the GFPM to produce valid results re-
quires

B(s, s′)� 1 , kg(s− s′) ≤ 1 (44)

and

d

ds′
[βBm(s− s′)g(s− s′)]� 1 , kg(s− s′) > 1 (45)
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Both cases (equation (44) and (45)) are optimally satisfied when B is
zero. We will now show the two cases for which this optimal solution
exists. Explicitly, B is written as

B =

([
f(s)− f(s′)
g(s− s′)

]2

+
[
ξ (f(s))− ξ(f(s′))

g(s− s′)

]2
) 1

2

− 1 (46)

or, after extracting g

B = g(s− s′)−1
[(
f (s)− f

(
s′

))2 +
(
ξ (f (s))− ξ

(
f

(
s′

)))2
]1/2
− 1.
(47)

Thus B is zero for surfaces where

[(
f (s)− f

(
s′

))2 +
(
ξ (f (s))− ξ

(
f

(
s′

)))2
]1/2

(48)

can be expressed as a function of s − s′ only. There are two such
surfaces; the straight line for which equation (48) is s − s′ and the
circle for which equation (48) is 2r sin((s − s′)/2r) , where r is the
circles radius.

4.1. Choosing g(x) to Minimize the Error in an Average
Sense

In general, it is not possible to pick a function g such that B is
zero. Consider the situation where the minimization criterion, given by
equation (45), is bounded by a two-dimensional error function ε(s, s′) ,
where s is the arclength parameterization variable. Equationally this
is

d

ds′

[
d(s, s′)
g(s− s′) − 1

]
g(s− s′) < ε(s, s′). (49)

The function ε(s, s′) represents a surface and we would like this func-
tion to be a minimum in some sense. To continue we introduce the
definition for the average of a function over a finite domain

〈f〉s =
1
L

∫
s
f ds, (50)
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with L equal to the scalar length of the domain in terms of the variable
s . To make ε(s, s′) small in an average sense we apply equation (50)
over the variables s and s′ to get∫

s

[∫
s′

d

ds′
[
d(s, s′)− g(s− s′)

]
ds′

]
ds <

∫
s

∫
s′
ε(s, s′) ds′ ds (51)

which reduces to∫
s
d(s, s′) ds−

∫
s
g(s− s′) ds <

∫
s

∫
s′
ε(s, s′) (52)

Thus we can minimize the error in an average sense, i.e., set∫
s

∫
s′ ε(s, s

′) = 0 , if
g(s′) =

〈
d(s, s− s′)

〉
s

(53)

We note that g(x) = g(−x) by definition, thus g(s−s′) is well defined
everywhere.

5. Reciprocity

Reciprocity is a necessary but not sufficient condition for any
solution to Maxwell’s equations. This is evident in the fact that non-
consistent numerical solutions may exhibit reciprocity. In its most sim-
ple form the reciprocity theorem tells us that the measured response of
a system to a source is unchanged when the source and measurer are
interchanged. It is sufficient to show that either the impedance or ad-
mittance operator of a linear system is symmetric to show reciprocity.
In the GFPM we have chosen g(x) such that the approximation op-
erator (impedance) (18) is symmetric, as is its inverse, the admittance
operator. Thus the approximate solution system obeys reciprocity as
does its error (by definition of the total system being reciprocal). It
follows that any necessary criterion for the validation of the GFPM
should also satisfy reciprocity. The first of our criteria (equation (30))
is satisfied by symmetry in g(x) and noticing that

Bm(s− s′)= max
s
B(s, s− s′) = max

s′
B(s′, s′ − s) =Bm(s′ − s) (54)

so that
d

ds′
Bm(s− s′) ≡ d

ds
Bm(s′ − s) (55)
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The second (41) is trivially true because BM is a constant.

6. Analytic Comparison of the GFPM and the Kirchhoff
and Height Perturbation Method

In Meecham’s paper [13] on the validity of the Kirchhoff method
the scalar Helmholtz equation is expressed in terms of the Kirchhoff
term and a series of integrals. Meecham continues by investigating the
neglected terms of the series and shows that for the Kirchhoff term
to converge to the exact solution the first integral I in the neglected
series must be as small as possible. A bound for this term is given by,

|I| ≤M ′
∣∣∣∣dξ(x)mdx

∣∣∣∣ +M ′′
1

|k|Rm
(56)

where M ′ and M ′′ are constants independent of the surface, Rm is
the minimum radius of curvature along the surface and |dξ(x)m/dx|
is the maximum slope of the surface. The conditions for convergence
are then given by

|I| ≈ 0 (57)∣∣∣∣dξ(x)mdx

∣∣∣∣� 1 (58)

|k|Rm � 1 (59)

Using these conditions we will show that if these are true then the
GFPM will also be valid.

Consider the function B , i.e., the function that needs to be min-
imized for validity of the GFPM given by

B(s, s′) =

([
f(s)− f(s′)
g(s− s′)

]2
{

1 +
[ξ(f(s))− ξ(f(s′))]2

[f(s)− f(s′)]2

})1/2

− 1

(60)
If we consider condition (58) then B , which is zero for exact solutions,
is approximated by,

B(s, s′) ≈
[
f(s)− f(s′)
g(s− s′)

]
− 1 (61)
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and
g(s− s′) = f(s)− f(s′) (62)

gives the required result.
Using the radius of curvature R given by

R =

[
1 +

(
dξ
dx

)2
]3/2

∣∣∣ d2ξdx2

∣∣∣ (63)

condition (59) is satisfied when

∣∣∣∣d2ξ

dx2

∣∣∣∣
2/3

− 1�
(
dξ

dx

)2

∣∣∣∣d2ξ

dx2

∣∣∣∣� 23/2

(64)

But if the change in ξ with respect to x is small everywhere, as
demanded by condition (58), then the rate of change must also be small
and so equation (62) gives one suitable GFPM for when Kirchhoff’s
method is valid.

The conditions of validity for the height perturbation method [14]
are given by ∣∣∣∣max

x

dξ(x)
dx

∣∣∣∣� 1 (65)

kmax
x
|ξ(x)| � 1 (66)

We consider that all perturbations such that they are about the mean
plane z = 0 . We may write B(s, s′) as

B(s, s′) =

([
f(s)− f(s′)
g(s− s′)

]2
{

1 +
[ξ(f(s))− ξ(f(s′))]2

[f(s)− f(s′)]2

})1/2

− 1

(67)
Using condition (66) gives

B(s, s′) ≈
[
f(s)− f(s′)
g(s− s′)

]
− 1 (68)



236 Moroney and Cullen

and the required g function is

g(s− s′) = f(s)− f(s′) (69)

Condition (66) gives the same result.

7. Numerical Examples

As an example of the method and some of the functions used we
consider here a cubic surface of the form

ξ(x) = A(x− r)(x+ r)x (70)

where −r, r, 0 are the roots of ξ(x) and A is a scaling variable. Let us
examine the case where r = 20 and A = 1/2000 in the domain x ∈
[−20 20] as illustrated in Figure (2). All dimensions are in metres. It
is apparent that as an approximation the height perturbation method
[14] is unsuitable as the necessary requirements are

β |ξ(x)| � 1 (71)
|∇ξ(x)| � 1 (72)

The maximum slope for the example is approximately 11.3◦ and the
maximum absolute height 1.5m thus β must be much less than 2/3 ;
λ much greater than 9.3m . Kirchhoff theory overcomes the difficulty
in restrictive wavenumber. The requirements for this method are [13]∣∣∣∣max

x

dξ(x)
dx

∣∣∣∣� 1 (73)

|β|min
x
ρ� 1 (74)

where ρ is the radius of curvature. Equation (73) is satisfied by the
inequality 0.2 � 1.0 and equation (74) is satisfied if the inequality
β × 31.051 � 1 is true. In addition to the above a criterion must be
satisfied for grazing incident of the impinging radiation. In particular
this is [16] 2β|ρ|sin3θ � 1 , where θ is the grazing angle.

For the Green’s function perturbation method to be valid we ex-
pect β d

ds′ g(s− s′)B(s, s′) and B(s, s′)|βg(s−s′)<1
to be small. The fol-

lowing figures show these functions for three different choices of g .
The choices are:
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1. is calculated exactly in the average sense as in equation (53). By
exactly we mean that average is calculated over all N match
points. This is an O(N2) operation and thus dominates the com-
putation time. We shall call this scheme the N point average
method.

2. g is calculated in the average sense by polynomial curve fitting
to a set of M points, where M is much less than N . The com-
putational cost of this method is O(M2) . M is chosen such that
M2 ≤ N logN , and the overall computational cost of calculating
the current is O(N logN) . We shall call this scheme the poly-
nomial average fit method. The order of the polynomial is left
open.

3. g is chosen such that g(s − s′) = g(sn − s′m) = |n −m|∆s . We
shall refer to this scheme as the position index method.

The three g functions are shown, normalized by the exact average
value so that we can see a difference, in Figure (3). The polynomial
average fit is third order.

Figure 2. Cubic surface. ξ(x) = 1/2000(x− 20)(x+20)x. The x and y ases

are scaled in meters.
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Figure 3. Normalized distance functions g. The normalization is by the

N point average g function.

Figures (4) and (5) show the functions d
ds′ g(s − s′)B(s, s′) and

B(s, s′)|βg(s−s′)<1
for case (1). Similarly Figures (6) and (7) show the

same functions for case (2) and Figures (8) and (9) for case (3). To avoid
any ambiguity the curves drawn in the figures are representative of
matrices, defined by d

ds′ g(s−s′)B(s, s′) and B(s, s′)|βg(s−s′)<1
, skewed

such that the leftmost position in the figure refers to the diagonal
elements of the matrix. The matrices are symmetric about the diagonal
and the x -axis refers to positions to the right of the diagonal. Each
curve represents one line of the matrix. The individual curves are not
labelled as it is the general structure of the matrix which is considered
important.
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Figure 4. d
ds′ g(s−s′)B(s, s−s′). The g function is by the N point average

method.

Figure 5. B(s, s− s′). The g function is by the N point average method.
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Figure 6. d
ds′ g(s − s′)B(s, s − s′). The g function is by the polynomial

average fit method (third order).

Figure 7. B(s, s − s′). The g function is by the polynomial average fit

method (third order).
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Figure 8. d
ds′ g(s− s′)B(s, s− s′). The g function is by the position index

method.

Figure 9. B(s, s− s′). The g function is by the position index method.
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The limiting value of g(s−s′)B(s, s′) as |s−s′| → 0 can be seen
for all three cases in Figures (10), (11) and (12) thus ensuring a small
error in the local region about any integration point in all cases.

Estimations for the current density induced on the surface of the
cubic scatterer for the stated choices of g are shown in Figure (13) for
the case of a TM line source at (−12, 12) and β = 8 .

As with all methods, validation is best demonstrated against ex-
act solutions and other well known methods. Results with g(s − s′) ,
in the GFPM, satisfying average error minimization by third order
polynomial fit are shown against an exact solution by the method of
moments (discretizations every λ/7 wavelengths and point matching)
and the Kirchhoff approximation with a TM line source at (−12, 12)
and β = 8 are shown in Figure (13).

Figure (16) has the source moved to (−40, 8) which includes graz-
ing incidence and β = 10 . It includes current estimations for g func-
tions of the following types; N point average method, polynomial fit
average method and index position method.

In Figure (14) the polynomial average fit current is compared
against an exact moment method solution and a physical optics solu-
tion.

The total field is calculated at 2.4m above the surface. Readings
for the N point average method, the polynomial average method and
the index position methods are compared against the physical optics
method and an exact moment method and are shown in Figure (15).
The mean error and standard deviations from exact solutions are tabled
in (1).

Figure (17) has the source moved to (−4000, 12) and β = 8 so
that diffraction is a significant feature. The plot indicates the total field
2.4m above the surface.

The total field from the current calculated by the Kirchhoff
method does not include shadowing [7, 11] but the result is similar
due to the grazing incidence of the source field. Table (2) indicates the
mean error and standard deviation in relative dB for Kirchhoff and
the GFPM in Figure (17).

It is clear that the Green’s function perturbation method is the
most suitable approximation in all cases.
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Figure 10. g(s− s′)B(s, s− s′). The g function is by the N point average

method.

Figure 11. g(s−s′)B(s, s−s′). The g function is by the polynomial average

fit method with a polynomial of order three.
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Figure 12. g(s − s′)B(s, s − s′). The g function is by the position index

method.

Figure 13. Induced current on surface illustrated in Figure (2) with a

line source positioned at (12, 12) with frequency 382MHz(β = 8).
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Figure 14. Comparison of currents calculated by exact moment method,

physical options and GFPM using polynomical average fit scheme for a

line source at (-40, 8) with frequency 477.5MHz(β = 10).

Figure 15. Total fields 2.4m above surface calculated from currents calcu-

lated by exact moment method, physical optics method and polynomial

average fit scheme of the GFPM from Figure (14).



246 Moroney and Cullen

Table 1. Error quantifications for the solutions of approximate methods

shown in Figure (15).

Figure 16. Induced current on surface with source at (-40, 8) and β = 10.



Green’s function perturbation method 247

Figure 17. Total field 2.4m above surface with source at (-4000, 12) and

β = 8.

Table 2. Error quantifications for the solutions of approximate methods

shown in Figure (17).

7.1. Application to Undulating Terrain

The method has been applied to terrain height data for a number
of regions in Denmark [2]. The method is used in a general way, using
the function g(s−s′) = |s−s′| , as described above with the exception
that where the method does not satisfy its validity criteria the inci-
dent field is set to zero. This allows for a free space decay of the current
in these regions without adding any complexity to the method. This
preserves the properties of reciprocity and self-consistency. The data
calculated using the Green’s function perturbation method GFPM are
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compared with a fast exact moment method solution of the electric
field integral equation using a natural basis (described by Moroney
and Cullen in [19]) and field measurements which were provided with
the terrain data. The data for Figures (18) and (19) were calculated
at a frequency of 1900MHz . The data for Figures (20) and (21) were
calculated at a frequency of 435MHz . For both the above data sets
the radiating source was positioned 10.4m above the leftmost terrain
element and the field intensity was calculated at 2.4m above the ter-
rain.

Figure 18. Jerslev terrain profile.

Figure 19. Jerslev field intensity.
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Figure 20. Hjorring terrain profile.

Figure 21. Hjorring field intensity.
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8. Conclusion

In this paper we have indicated a new perturbation method based
on the Green’s function for solving the Helmholtz integral. We have
shown that the method is absolutely and uniformly convergent and
specified criteria which should be minimized for fast method conver-
gence. We have shown that the method is more suitable for a wide
class of surfaces than other approximate methods, namely the height
perturbation method and the Kirchhoff approximation. We have de-
scribed a computationally simple method for picking the function g ,
on which the method hinges and shown that the solution and its vali-
dating measures obey reciprocity.

We have elucidated a simple example to show the steps of the
method and compared it with the above approximate methods. We
have also compared it with another integral equation approximation
over natural terrain profiles at different frequencies and found the
GFPM a justifiable candidate.

The GFPM has also been applied to sinusoidally rough surfaces
[12], where the O(N2) N point average method of picking the g func-
tion was used, with positive results.

Finally one should note that if we define Ei by

Ei = Ĕ exp(−kbx) (75)

where Ĕ is the complex envelope of Ei with respect to the monochro-
matic function exp(−kbx) then provided Ei and H

(2)
0 (k|g|) are

bandpass with centre wavenumber kb and bandwidth b less than kb/2
we have

Ĕ = 1/2J̆ ∗ ˘
H

(2)
0 (k|g|) (76)

where ∗ defines convolution. The complex envelopes can often (for
example where forward propagation dominates) be sampled at a sig-
nificantly lower rate than the complex fields.
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Appendix

A bound for dn

dxnH
(2)
0 (x) . It is necessary for our calculations to be

able to bound the n th derivative of the zeroth order Hankel function of
the second kind with respect to its entire argument. The n th derivative
can be represented [1] as

dn

dxn
H

(2)
0 (x) =

1
2n

[
H

(2)
−n(x)−

(n
1

)
H

(2)
2−n(x)

+
(n

2

)
H

(2)
4−n(x)− . . .+ (−1)nH(2)

n (x)
] (77)

An upper bound for this term can be found by taking the absolute
value of all terms on the right hand side of the above formula.

∣∣∣∣ dndxnH(2)
0 (x)

∣∣∣∣ ≤ 1
2n

∣∣∣H(2)
1 (x)

∣∣∣ n∑
k=1

(n
k

)
|(−1)n| (78)

=
1
2n

∣∣∣H(2)
1 (x)

∣∣∣ 2n (79)

=
∣∣∣H(2)

1 (x)
∣∣∣ (80)
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