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Abstract–Unique effects of the double helical conductances of the
surfaces (HCS) on the Mueller matrix (Mm) of a two-layer eccentri-
cally bianisotropic cylinder linear array are investigated in this paper.
The mathematical treatment is conducted based on the boundary-
value approach combined with the technique of generalized separa-
tion variables. Both the TMz- and TEz-polarization of the obliquely
incident waves are taken into account in the analysis. To gain in-
sight into some physical mechanisms, numerical examples are pre-
sented to show the influences of the variations of the twist angles
on the behavior of Mm of a linear array of four bianisotropic cylin-
ders. Correspondingly, various magnetic symmetry groups (such as
D∞(C∞), C∞v(C∞), D∞h(D∞), C∞h(C∞)) and some generalized
symmetry and anti-symmetry relations, which govern all the elements
of Mm or the scattering cross section under special chiral operations,
are demonstrated. The present studies can be exploited to identify
the constitutive characteristics of some bianisotropic media and to pro-
vide better understanding of the electromagnetic wave interaction with
bianisotropic cylindrical objects with complex boundaries.
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1. INTRODUCTION

Electromagnetic scattering of a plane wave by a singly cylinder, a
system of two cylinders, and an array of many conducting and di-
electric cylinders has been extensively studied by many researchers in
the past several decades [1–11]. These studies have been motivated
both by scientific interests in developing new techniques for solving
scattering problems and by some particular engineering applications.
Recently, Korshunova, Sivov, and Shatrov, etc. have studied the in-
teraction between electromagnetic waves and cylindrical objects pos-
sessing perfectly electric or magnetic conductance along helical lines,
demonstrated several novel phenomena, and proposed some practical
applications at microwave frequencies [11–16].

On one hand, the boundary conditions of these cylindrical objects
are directly related to the twist angle of the helical surfaces, so the
radiation, the wave guiding, and the scattering characteristics can be
controlled and optimized by choosing an appropriate twist angle. In
some special cases of the helical conductance surfaces, it is known that
strip grid structures can be used as the polarization selective surface
or utilized to build hard surfaces for reducing the forward scattering of
cylindrical objects [17–19]. Also, they can be exploited to make some
helical antenna structures at microwave frequencies [20, 21]. On the
other hand, it is interesting to note that spherically helical conducting
particles can be exploited to make artificial chiral media [22, 23].

In this paper, some novel effects of double helical conductances of
the surface (HCSs) on the Mueller matrix (Mm) of a linear array of ec-
centrically two-layered bianisotropic cylinders are found and discussed
in the case of the TMz- and TEz-polarizations of the obliquely inci-
dent waves. Certainly, such double HCS can be made of conductor
grids in terms of a multifilar helix with a twist angle in either the
right-handed (RH) or the left-handed (LH) form. It is known that
the electromagnetic scattering from cylindrical bianisotropic objects
has been well-documented recently [24–26], and the characteristics of
Mm for two bianisotropic cylinders have also been examined in one of
the authors’ previous studies [27, 28]. The current work actually is a
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further extension of the previous studies, where the Mm features re-
lated to the double HCS of inhomogeneous bianisotropic cylinders will
be looked into. The motivation for this study is not only the academic
importance but also the essential measurement of the bianisotropic
cylindrical objects combined with complex boundaries.

2. DESCRIBTION OF THE PROBLEM

Figure 1 presents the geometry of the problem, in which N parallel,
infinitely long, non-overlapping, eccentrically two-layered bianisotropic
cylinders are embedded in the isotropic medium (εb, µb) . The cross
section of the qth composite cylinder is shown in Fig. 1(b), and its
radii are denoted by R

(q)
1 and R

(q)
2 with respect to two local co-

ordinate systems, respectively, while the eccentric distance is noted by
d(q) (q = 1, 2, . . . , N) and the distance between the qth cylinder and
the first is given by D(q) (q �= 1) . The incident plane wave is assumed
to propagate in the direction of k(kb, θ0, ϕ0) = kb(sin θ0 cos ϕoex +
sin θ0 sinϕ0ey + cos θ0ez) , where (ex, ey, ez) are the three unit vectors
in the host co-ordinate system.

Here the constitutive features of the two-layer bianisotropic media
are described by the linear equation as

(
ejωt

)
:

�D(l,q) =
[
ε(l,q)

]
�E(l,q) +

[
ξ(l,q)
e

]
�H(l,q) l = 1, 2 (1a)

�B(l,q) =
[
µ(l,q)

]
�H(l,q) +

[
ξ(l,q)
m

]
�E(l,q) (1b)

where
[
ε(l,q)

]
,

[
µ(l,q)

]
,

[
ξ
(l,q)
e

]
, and

[
ξ
(l,q)
m

]
are the permittivity ten-

sor, permeability tensor, and magnetoelectric cross-coupling tensors,
respectively. They can be expressed in the gyrotropic from, i.e.,

[
C(l,q)

]
=






C
(l,q)
1 −jC

(l,q)
12 0

jC
(l,q)
12 C

(l,q)
1 0

0 0 C
(l,q)
2




 , C = ε, µ, ξe, ξm (2)

where the case shown in reference [29] is not taken account. For cer-
tain magnetic symmetry groups there exist many kinds of possible
choices for

[
C(l,q)

]
[30–33]. For instance, corresponding to the mag-

netic groups C∞, D∞(C∞), C∞v(C∞), C∞h(C∞) , respectively, the
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(a)

(b)

Figure 1. Geometry and co-ordinates of the linear array of N par-
allel eccentric bianisotropic cylinders with the helical conductances at
ρ
(q)
1 = R

(q)
1 and ρ

(q)
2 = R

(q)
2 , respectively, The separation between the

cylinders C(q) and C(N) is noted by D(Nq) = |D(N) − D(q)| .

magnetoelectric cross-coupling tensors
[
ξ(q)

]
, and

[
η(q)

]
could be

1◦.
[
ξ(q)

]
=






ξ
(q)
xx ξ

(q)
xy 0

−ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




,

[
η(q)

]
=






η
(q)
xx η

(q)
xy 0

−η
(q)
xy η

(q)
xx 0

0 0 η
(q)
zz




 (3a)
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2◦.
[
ξ(q)

]
=






ξ
(q)
xx ξ

(q)
xy 0

−ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




 ,

[
η(q)

]
=





−ξ

(q)
xx −ξ

(q)
xy 0

ξ
(q)
xy −ξ

(q)
xx 0

0 0 −ξ
(q)
zz




 (3b)

3◦.
[
ξ(q)

]
=






ξ
(q)
xx ξ

(q)
xy 0

−ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




 ,

[
η(q)

]
=






ξ
(q)
xx ξ

(q)
xy 0

−ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




 (3c)

4◦.
[
ξ(q)

]
=






ξ
(q)
xx ξ

(q)
xy 0

−ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




 ,

[
η(q)

]
=






ξ
(q)
xx −ξ

(q)
xy 0

ξ
(q)
xy ξ

(q)
xx 0

0 0 ξ
(q)
zz




 (3d)

The twist angles of the helical lines on the inner surface ρ
(q)
1 = R

(q)
1 and

the outer surface ρ
(q)
2 = R

(q)
2 above are assumed to be Ψ(q)

1 and Ψ(q)
2 ,

respectively. When 0 < Ψ(q)
1,2 < π

2 , the helical lines are the RH, while
π
2 < Ψ(q)

1,2 < π correspond to the LH. Especially, when Ψ(q)
1,2 = 0, π

2 the
helical surfaces are reduced to the T- and L-strips, respectively [19].

3. FIELD DISTRIBUTION

At first, a plane wave of TM with respect to z
(q)
2 axis obliquely incident

on the linear array and the incident electric field components in the
cylindrical co-ordinate system O

(q)
2

(
ρ
(q)
2 , ϕ

(q)
2 , z

(q)
2

)
are expressed as

E
(q)
zinc = E0 sin θ0e

jδ(q)
∞∑

m=−∞
jmJ

(q)
m2e

−jm
(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 , q=1, 2, . . . , N (4)

E
(q)
ϕinc = E0 sin θ0e

jδ(q)
∞∑

m=−∞

m cos θ0

kb0ρ
(q)
2

jmJ
(q)
m2e

−jm
(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 (5)

H
(q)
ϕinc = −E0 sin θ0

jωεb

kb0
ejδ(q)

∞∑

m=−∞
jmJ

(q)′

m2 e
−jm

(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 (6)

where J
(q)
m2 = Jm

(
kb0ρ

(q)
2

)
is the mth-order Bessel function of the

first kind, J
(q)′

m2 = J ′
m

(
kb0ρ

(q)
2

)
denotes the derivative of J

(q)
m2 with

respect to its argument, k2
b0 = k2

b − β2, β = kb cos θ0, kb = ω
√

µbεb,

δ(q) = kb0 cos ϕ0D
(q), e

(q)
2 = ejβz

(q)
2 .
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By using the method of generalized separation variables and follow-
ing the similar procedure adopted in [28], it is found that the tangential
filed components in the bianisotropic core ρ

(q)
1 ≤ R

(q)
1 and in the sec-

ond layer ρ
(q)
2 ≤ R

(q)
2 under the co-ordinate system O

(q)
1

(
ρ
(q)
1 , ϕ

(q)
1 , z

(q)
1

)

can be written as

E
(q)
zl =

∑

±
E

(q)
zl±, H

(q)
zl =

∑

±
H

(q)
zl±, E

(q)
ϕl =

∑

±
E

(q)
ϕl±, H

(q)
ϕl =

∑

±
H

(q)
ϕl±,

(7a)
and









E
(q)
z1±

H
(q)
z1±

E
(q)
ϕ1±

H
(q)
ϕ1±









=
∞∑

m=−∞








X
(q,1)
1±

X
(q,1)
3±

X
(q,1)
5±

X
(q,1)
7±








D
(q,1)
1m±e−jmϕ

(q)
1 (7b)









E
(q)
z2±

H
(q)
z2±

E
(q)
ϕ2±

H
(q)
ϕ2±









=
∞∑

m=−∞








X
(q,2)
1± X

(q,2)
2±

X
(q,2)
3± X

(q,2)
4±

X
(q,2)
5± X

(q,2)
6±

X
(q,2)
7± X

(q,2)
8±








[
D

(q,2)
1m±

D
(q,2)
2m±

]

e−jmϕ
(q)
1 (7c)

where X
(q,l)
s± (s = 1, . . . , 8) can be referred in [28]. However, it must

be noted that the time harmonic factor here is ejωt , and D
(q,l)
1,2m± are

the unknown mode expanding coefficients. The boundary conditions
for the HCS on the surface ρ

(q)
1 = R

(q)
1 are

E
(q)
z1 = E

(q)
z2 , E

(q)
ϕ1 = E

(q)
ϕ2 , E

(q)
ϕ1 + E

(q)
z1 tan Ψ(q)

1 = 0,

H
(q)
ϕ1 + H

(q)
z1 tan Ψ(q)

1 = H
(q)
ϕ2 + H

(q)
z2 tan Ψ(q)

1 (8)

Using the addition theorem for the cylindrical Bessel functions, (7c)
can be transformed into the following form in the co-ordinate system
O

(q)
2

(
ρ
(q)
2 , ϕ

(q)
2 , z

(q)
2

)
:








E
(q)
z2

H
(q)
z2

E
(q)
ϕ2

H
(q)
ϕ2








=
∞∑

n=−∞

∞∑

m=−∞











V
(q,1)
nm

(
ρ
(q)
2

)
V

(q,2)
nm

(
ρ
(q)
2

)

V
(q,3)
nm

(
ρ
(q)
2

)
V

(q,4)
nm

(
ρ
(q)
2

)

V
(q,5)
nm

(
ρ
(q)
2

)
V

(q,6)
nm

(
ρ
(q)
2

)

V
(q,7)
nm

(
ρ
(q)
2

)
V

(q,8)
nm

(
ρ
(q)
2

)











[
D

(q,2)
1m+

D
(q,2)
1m−

]

e−jmϕ
(q)
2

(9)
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where V
(q,s)
nm

(
ρ
(q)
2

)
(s = 1, 2, . . . , 8) are presented in reference [28] and

suppressed (−j ⇒ j) . But, it is assumed here that β = kb cos θ0 �= 0
and the four constitutive tensors are all in the gyrotropic form.

Furthermore, the total tangential field components outside the bian-
isotropic cylinders

(
ρ
(q)
2 ≥ R

(q)
2

)
with respect to O

(q)
2

(
ρ
(q)
2 , ϕ

(q)
2 , z

(q)
2

)

can be written as:

E
(q)
zb =E

(q)
ϕinc +

∞∑

m=−∞





a(q)

m H
(q)
m2 + J

(q)
m2




q−1∑

g=1

A(g)
mq +

n∑

h=q+1

A(h)
mq









e
(q)
ϕ2

(10a)

H
(q)
zb =

∞∑

m=−∞





b(q)
m H

(q)
m2 + J

(q)
m2




q−1∑

g=1

B(g)
mq +

n∑

h=q+1

B(h)
mq









e
(q)
ϕ2 (10b)

E
(q)
ϕb =E

(q)
ϕinc +

∞∑

m=−∞

β cos θ0

k2
b sin2 θ0










a(q)

m

m

ρ
(q)
2

H
(q)
m2 + J

(q)
m2

N∑

k=1
k �=q

A(k)
ma







+
jωµb

kb0



b(q)
m H(q)′

m + J
(q)′

m2




q−1∑

g=1

B(g)
mq +

N∑

h=q+1

B(h)
mq













e(q)
ϕ2

(10c)

H(q)
ϕb

= H
(q)
ϕinc +

∞∑

m=−∞

(
−jωεb

kb0

)







a(q)
m H

(q)′

m2 + J
(q)′

m2




q−1∑

g=1

A(q)
mq +

N∑

g=h+1

A(h)
mq









+
cos θ0

kb sin2 θ0




∞∑

m=−∞
b(q)
m

m

ρ
(q)
2

H
(q)
m2 + J

(q)
m2




q−1∑

g=1

B(g)
mq +

N∑

g=h+1

B(h)
mq













e(q)
ϕ2

(10d)

and

A(g)
mq

(
B(g)

mq

)
=

∞∑

l=−∞
a(g)

m

(
b(g)
m

)
H

(2)
l−m

(
kb0D

(gq)
)
ej(l−m)ϕ0 , g < q, (10e)

A(h)
mq

(
B(h)

mq

)
=

∞∑

l=−∞
(−1)(l+m)a(h)

m

(
b(h)
m

)
H

(2)
l−m

(
kb0D

(hq)
)
ej(l−m)ϕ0 , h < q

(10f)
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in which the factor e
(q)
2 is understood and suppressed in (10a–d), and

the translation addition theorem for cylindrical wave function is also
employed here. H

(q)
m2 = H

(2)
m

(
kb0R

(q)
2

)
is the mth-order Hankel func-

tion of the second kind, H
(q)′

m2 = H
(2)′
m

(
kb0ρ

(q)
2

)
denotes the derivative

of H
(q)
m2 with respect to its argument, e

(q)
ϕ2 = ejmϕ

(q)
2 , and a(b)(q)m are

the unknown scattering coefficients.
Similarly, the boundary conditions are given as follows: for the HCS

at ρ
(q)
2 = R

(q)
2 :

E
(q)
z2 = E

(q)
zb , E(q)

ϕ2
= E(q)

ϕb
, E(q)

ϕ2
+ E

(q)
z2 tan Ψ(q)

2 = 0,

H(q)
ϕ2

+ H
(q)
z2 tan Ψ(q)

2 = H
(q)
ϕb + H

(q)
zb tan Ψ(q)

2 (11a)

and for the T-strips
(
Ψ(q)

2 = 0
)

at ρ
(q)
2 = R

(q)
2 ,

E
(q)
z2 = E

(q)
zb , E(q)

ϕ2
= E(q)

ϕb
= 0, H(q)

ϕ2
= H(q)

ϕb
(11b)

while for L-strips
(
Ψ(q)

2 = 90◦
)

, we get

E
(q)
z2 = E

(q)
zb = 0, E(q)

ϕ2
= E(q)

ϕb
, H

(q)
z2 = H

(q)
zb (11c)

Introducing (10) into (11a), (11b), and (11c) yields a system of equa-
tions of infinite series for determining the unknown coefficients

{
D

(q)
1m±,

a
(q)
m , b

(q)
m , q = 1, 2, . . . , N

}
, respectively. For instance, for the case of

ψ
(q)
2 �= 0◦, 90◦, we have

∞∑

m=−∞

[
D

(q)
1m+V (q,1)

nm

(
R

(q)
2

)
+ D

(q)
1m−V

(q,2)
nm

(
R

(q)
2

)]

=



S
(q)
1 J

(q)
m2 + a(q)

m H
(q)
m2 + J

(q)
m2




q−1∑

g=1

A(g)
mq +

N∑

g=h+1

A(h)
mq







 ejmϕ0 (12a)

∞∑

m=−∞

[
D

(q)
1m+V (q,3)

nm

(
R

(q)
2

)
+ D

(q)
1m−V (q,4)

nm

(
R

(q)
2

)]

=
1

k2
b0





mβ

R
(q)
2



S
(q)
1 J

(q)
m2 + a(q)

m H
(q)
m2 + J

(q)
m2




q−1∑

g=1

A(g)
mq +

N∑

g=h+1

A(h)
mq











Clarification of the magnetic symmetry groups 113

+ jωµbkb0



b(q)
m H

(q)′

m2 + J
(q)′

m2




q−1∑

g=1

B(g)
mq +

N∑

g=h+1

B(h)
mq













ejmϕ0 (12b)

∞∑

m=−∞

{
D

(q)
1m+

[
tanV (q,1)

nm

(
R

(q)
2

)
+ V (q,5)

nm

(
R

(q)
2

)]

+ D
(q)
1m−

[
tanV (q,2)

nm

(
R

(q)
2

)
+ V (q,6)

nm

(
R

(q)
2

)]}
ejmϕ0 = 0 (12c)

∞∑

m=−∞

{
D

(q)
1m±

[
tanV (q,3)

nm

(
R

(q)
2

)
+ V (q,7)

nm

(
R

(q)
2

)]

+ D
(q)
1m−

[
tanV (q,4)

nm

(
R

(q)
2

)
+ V (q,8)

nm

(
R

(q)
2

)]}

=





tanψ

(q)
2



b(q)
m H

(q)
m2 + J

(q)
m2




q−1∑

g=1

B(g)
mq +

N∑

g=h+1

B(h)
mq









+
1

k2
b0





−jωεbkb0



S
(q)
1 J

(q)′

m2 + a(q)
m H

(q)′

2 +J
(q)′

m2




q−1∑

g=1

A(q)
mq +

N∑

g=h+1

A(h)
mq














+
mβ

R
(q)
2



b(q)
m H

(q)
m2 + J

(q)
m2




q−1∑

g=1

B(g)
mq +

N∑

g=h+1

B(h)
mq













emϕ0 (12d)

where S
(q)
1 = jm sin θ0e

jδ(q). It should be noted that the above sys-
tem is solved for each m independently. To find a numerical solution
of (12), we must truncate it to a finite size. Physical insight into
the problem suggests that the series-truncation number N0 (m, n, l =
−N0, . . . , N0), depends on the electric size max

{
kbR

(q)
2

}
. Including

the terms (2N0 + 1) leads to 4N(2N0 + 1) equations, i.e.,

[
D̃

]

4N(2N0+1)×4N(2N0+1)

[
ã
]

4N(2N0+1)×1
=

[
f̃
]

4N(2N0+1)×1
(13)

where [ã] is the unknown coefficient matrix,
[
f̃
]

the incident matrix,

and
[
D̃

]
a sparse matrix. For instance, when N = 4,

[
D̃

]
contains

144 zero sub-matrixes of (2N0 + 1) × (2N0 + 1) , and the sparsity is
increased if θ0 = 90◦ . Due to the sparsity property of

[
D̃

]
the dimen-

sion of the system can be easily reduced prior to numerical solution
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by eliminating variables which yields a reduction in dimension, and
hence, in the computation time, especially for the large N . With the
θ0 approaching to 0◦ or 180◦ , the system matrix

[
D̃

]
becomes quite

ill-conditioned because strongly guided modes (with respect to z
(q)
2 -

axis) are excited. On the other hand, the truncation term number N0

should be chosen to be large enough when kb0R
(q)
2 � 1 . Under such

circumstances the asymptotic technique of geometric optics must be
developed. For the obliquely incident wave of a TEz-polarization plane
wave, the related field components and a system matrix equations for
determining the unknown coefficients are presented in Appendix A.

Of particular interest here is the Mueller scattering matrix elements
which contain enough information of co- and cross-polarized wave scat-
tering by the objects. Furthermore, they can be exploited for deter-
mining the constitutive parameters of various complex media [34, 35],
and the Mueller matrix is

[M ] = [muv]4×4, muv = muv(T1, T2, T3, T4) (14a)

with [24]

T1 =
∞∑

m=−∞

N∑

q=1

jm

sin θ0
a(q)

m ejkbD(q) cos ϕejm(ϕ−ϕ0),

T2 = T1|a→c, T3 =
T1|a→dk

ωµb
, T4 =

T1|a→c ωµb

kb

(14b)

where (u, v) = 1, 2, 3, and 4, and all the 16 elements can be calcu-
lated based on the formulas shown in (10) and in Appendix A, These
elements of [M ] contain very sensitive co- and cross-polarized scatter-
ing information for identifying the constitutive features of bianisotropic
objects with different magnetic symmetry groups, and certainly, signif-
icant cross depolarizing effects can be expected in the scattered fields.

On the other hand, the normalized scattering cross section per unit
length of the above linear array can be derived following the proce-
dure used in [3]. For example, for four parallel two-layered eccentric
bianisotropic cylinders with equal interval D(2) , we find

CTM
sca =

4ηω

kb0

(
εbC

TMI
sca + µbC

TMII
sca

)
(15a)

CTE
sca =

4ω

ηk2
b0

(
µbC

TMI
sca + εbC

TMII
sca

)
(15b)
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and

CTMI
sca =

∞∑

m=−∞

4∑

q=1

∣
∣
∣a(q)

m

∣
∣
∣
2
+ Re

∞∑

n=−∞
γ

[
e−Jn−m

(
kb0D

(2)
) (

a(1)
m a(2)∗

n

+a(2)
m a(3)∗

n + a(3)
m a(4)∗

n

)
+ e+Jn−m

(
kb0D

(2)
)(

a(2)
m a(1)∗

n + a(3)
m a(2)∗

n

+a(4)
m a(3)∗

n

)
+ e−Jn−m

(
2kb0D

(2)
) (

a(1)
m a(3)∗

n + a(2)
m a(4)∗

n

)

+ e+Jn−m

(
2kb0D

(2)
) (

a(3)
m a(1)∗

n + a(4)
m a(2)∗

n

)

+Jn−m

(
3kb0D

(2)
) (

e−a(1)
m a(4)∗

n + e+a(4)
m a(1)∗

n

)]
(15c)

CTMI
sca =

∞∑

m=−∞

4∑

q=1

∣
∣
∣b(q)

m

∣
∣
∣
2
+ Re

∞∑

n=−∞
γ

[
e−Jn−m

(
kb0D

(2)
) (

b(1)
m b(2)∗

n

+b(2)
m b(3)∗

n + b(3)
m b(4)∗

n

)
+ e+Jn−m

(
kb0D

(2)
) (

b(2)
m b(1)∗

n + b(3)
m b(2)∗

n

+b(4)
m b(3)∗

n

)
+ e−Jn−m

(
2kb0D

(2)
) (

b(1)
m b(3)∗

n + b(2)
m b(4)∗

n

)

+ e+Jn−m

(
2kb0D

(2)
) (

b(3)
m b(1)∗

n + b(4)
m b(2)∗

n

)

+Jn−m

(
3kb0D

(2)
) (

e−b(1)
m b(4)∗

n + e+b(4)
m b(1)∗

n

)]
(15d)

and CTEI
sca =CTMI

sca |a→d, CTEII
sca =CTMII

sca |b→c, γ=(−1)nj(m+n)ej(m−n)ϕ0 ,
β = (n−m)π/2, e± = e±jβ . The aster above denotes complex conju-
gate, and Re the real part.

4. NUMERICAL RESULTS AND DISCUSSION

Obviously, there are countless numbers of interesting cases that we can
investigate, however, here we pay our major attention to the effects of
double HCS at ρ

(q)
l = R

(q)
l on the Mm of the above eccentric bian-

isotropic cylinder array. For practical consideration, we let εb = ε0

and µb = µ0 in the following numerical examples.
At first, the convergence behavior of the truncation terms in the

series summation has been checked. Table 1 lists the elements of
mnv (uv = 11, 12, and 13) as a function of the integer N0 , which is
the absolute value of the upper limit of the index in the series summa-
tion. The parameters chosen in the analysis are f = 10GHz, kbR

(q)
1 =

0.5kbR
(q)
2 = 2.0kbd

(q)
c = 1.0, kbD

(1) = 20.0, kbD
(2) = 40.0,
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Table 1. muv as a function of the integer N0 for four eccentric
bianisotropic cylinders with double helical conductances.

N0 log m11 m12/m11 m13/m11

4 7.638923 -0.703052 0.055291
5 6.407612 -0.550661 0.396088
6 7.100031 -0.717271 0.126303
7 6.680107 -0.669196 0.240703
8 6.697588 -0.673163 0.234063
9 6.696777 -0.672981 0.234374
10 6.696824 -0.672991 0.234357
11 6.696825 -0.672991 0.234357
12 6.696826 -0.672991 0.234357

kbD
(3) = 60.0 . The inner cylinder (q = 1, 2, 3, and 4) are char-

acterized by the ordinary uniaxial form with the magnetic symmetry
group D∞h , i.e.,

[
ε(1,q)

]
= ε0




2.0 0 0
0 2.0 0
0 0 2.5



 ,
[
µ(1,q)

]
= µ0




1.0 0 0
0 1.0 0
0 0 1.5



 ,

[
ξ(1,q)
e

]
=

[
ξ(1,q)
m

]
= j10−5I,

while the outer layer of the cylinders are assumed to be the uniaxial
bianisotropic form with the magnetic symmetry group D∞ :

[
ε(2,q)

]
= ε0




4.0 0 0
0 4.0 0
0 0 4.5



 ,
[
µ(2,q)

]
= µ0




2.0 0 0
0 2.0 0
0 0 2.5



 ,

[
ξ(2,q)
e

]
= −

[
ξ(2,q)
m

]
= j

√
µ0ε0




0.6 0 0
0 0.6 0
0 0 0.8



 .

The twist angles are chosen to be ψ
(q)
1 = 30◦ (RH), ψ

(q)
2 = 150◦ (LH),

and θ0 = 45◦, ϕ = ϕ0 = 60◦.
In Table 1, the outer radii of the four parallel cylinders are compara-

ble with the incident wavelength since we choose kbR
(q)
2 = 2.0 here. It
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(a)

θ0 = 45◦(135◦), ψ
(q)
1 = 45◦(135◦), ψ

(q)
2 = 135◦(45◦)

(b) (c)

θ0 = 45◦, ψ(q)
1 = 45◦, ψ(q)

2 = 135◦; θ0 = 135◦, ψ(q)
1 = 135◦, ψ(q)

2 = 45◦;

Figure 2. mvu (uv = 11, 23, and 33) as functions of ϕ0 and
ϕ (N0 ≥ 8).

is obvious that not many terms yields a convergent solution. However,
as θ0 tends to 0◦ or 180◦ , more terms should be kept in the series
summations, while the twist angles ψ

(q)
1,2 has little effect on the series

convergence.
Furthermore, Fig. 2 depicts the three-dimensional variation of [muv]

with the changing of ϕ0 and ϕ for the above magnetic symmetry
group case. The parameters are the same as in Table 1, except that
the incident direction and twist angles are varied.

In Fig. 2, only three elements of [M] are presented and another
elements are also examined but are suppressed here to save space.
The values of muv (uv = 23, 33) are normalized to m11 at each an-
gle. Physically, m11 represents the total signal intensity which is the
scattered intensity resulting in from un-polarized incident radiation
(|m11|2 > 1, |muv/m11| < 1, u, v �= 1) . So the minimum and maxi-
mum values of the vertical scale of the normalized elements are −1.0
and +1.0 , which represent −100% and +100% polarization, respec-
tively. It is well known that there exist several simplified relationships
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among the elements of [M] for the isotropic objects [3]. However, all
the 16 elements here are independent and are directly governed by the
twist angles ψ

(q)
l , which introduce significant cross-depolarized effect

in the most scattering directions, and strong cross depolarized effect
can be expected. On the other hand, by comparing (c) with (b) or by
another numerical test, we at first find,

muv

(
θ0, ψ

(q)
1 , ψ

(q)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])

= muv

(
180◦ − θ0, 180◦ − ψ

(q)
1 , 180◦ − ψ

(q)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(16a)

with uv = {11, 12, 21, 22, 33, 34, 43, and 44}, and

mũṽ

(
θ0, ψ

(q)
1 , ψ

(q)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])

= −mũṽ

(
180◦ − θ0, 180◦ − ψ

(q)
1 , 180◦ − ψ

(q)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(16b)

with ũṽ = {13, 14, 23, 24, 31, 32, 41, and 42} . Physically, (16a, b)
demonstrate that the co-polarized components uv are symmetric while
the cross-polarized components ũṽ are anti-symmetric. It should be
noted that (16a, b) have no relation to the geometrical size, location
and number of the cylinders, or the loss degree of UBMs even if the
magnetoelectric cross coupling elements C

(l,q)
1,2 (C = ξe, ξm) are in the

form of C
(l,q)
1,2 = C

(l,q)
e1,2 −jC

(l,q)
m1,2

{
Re(C(l,q)

e,m1,2) ≥ 0
}

. On the other hand,
we know that there exist several kinds of UBM, such as

1◦ (D∞)C(l,q)
1 �= 0, C

(l,q)
2 �= 0, C

(l,q)
12 = 0, C = ε, µ, ξe, ξm,

and ξm = −ξe (17a)
2◦ (Dh(D)) as 1◦, except that ξm = ξe (17b)
3◦ (D) as 1◦, except that ξm �= ξe (17c)

4◦ (Cv)C
(l,q)
1 �= 0, C

(l,q)
2 �= 0, C

(l,q)
12 = 0, C = ε, µ;

ξ
(l,q)
1,2e = 0, ξ

(l,q)
m1,2 = 0, ξ

(l,q)
e12 �= 0, ξ

(l,q)
m12 �= 0, ξ

(l,q)
m12 = −ξ

(l,q)
e12 (18a)

5◦ (Cv) as 4◦, except that ξ
(l,q)
m12 = ξ

(l,q)
e12 (18b)

6◦ (Cv) as 4◦, except that ξ
(l,q)
m12 �= ξ

(l,q)
e12 (18c)

All these models could be constructed by embedding helical elements
into a homogeneous medium using some special technologies. Struc-
turally, the above UBM (1◦) in Fig. 2 possess three (helical) chirali-
ties. Exchanging the locations of

[
ξ
(l,q)
e,m

]
in (1a, b) and replacing Ψ(q)

1
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by 180◦ − ψ
(q)
1 in (16a, b) mean the simultaneously reversed rotations

of helices. While additional numerical tests prove that (16a,b) only
hold true for the UBM (4◦) with the magnetic symmetry group C∞v .
For models 2◦, 3◦, 5◦, and 6◦ (16a, b) are not satisfied. Furthermore,
for 1◦ and 2◦ (16a, b) can be extended to more general case:

muv

(
θ0, ψ

(R)
1 , ψ

(L)
1 , ψ

(R)
2 , ψ

(L)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
= muv

(
180◦ − θ0,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 , 180◦ − ψ

(R)
2 , 180◦ − ψ

(L)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])

(19a)

mũṽ

(
θ0, ψ

(R)
1 , ψ

(L)
1 , ψ

(R)
2 , ψ

(L)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
= −mũṽ

(
180◦ − θ0,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 , 180◦ − ψ

(R)
2 , 180◦ − ψ

(L)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])

(19b)

where R is the number of cylinders with the RH surface conductance,
and L is the number of cylinders with the LH surface conductance
(R + L = N) . Naturally, (19a, b) hold true for the linear array of
biaxial bianisotropic cylinders with one special form of the magnetic
symmetry group C2v as [33]:

[
C(l,q)

]
=






C
(l,q)
1 0 0
0 C

(l,q)
2 0

0 0 C
(l,q)
3




 , C = ε, µ,

[
ξ(l,q)
e

]
= −

[
ξ(l,q)
m

]
= j




0 −ξ

(l,q)
e12 0

ξ
(l,q)
e12 0 0
0 0 0





(20)

For the ordinary uniaxial case
([

ξ
(l,q)
e

]
=

[
ξ
(l,q)
m

]
= 0I

)
, numerical

tests prove that, when
1. θ0 = 90◦ (normal incidence), and ψ

(q)
1 = 0◦ (l = 1, 2, q =

1, . . . , N) , i.e., the helical surfaces are reduced to be the T-strips, we
have,

[M ] =






m11 m12 0 0
m12 m11 0 0
0 0 m33 m34

0 0 −m34 m33




 (21)
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and there exist only four independent elements in [M ] . Since m34 =
−m43 = 0 , the scattered fields still contain circularly polarized compo-
nent while m13,14,23,24,31,32,41,42 = 0 indicates that the cylinders with
T-strips do not depolarize the incident waves.

2. θ0 �= 90◦ , but ψ
(q)
1 = 0◦ . Under such circumstances, [M ] takes

the general form. In some special directions, we always find,

m11 = m22|ϕ0=ϕ=0◦ , m11 = m22|ϕ0=ϕ=180◦ ,

m11 = m22|ϕ0=0◦,ϕ=180◦ , m11 = m22|ϕ0=180◦,ϕ=0◦ ;
m12 = m21|ϕ0=ϕ=0◦ , m12 = m21|ϕ0=ϕ=180◦ ,

m12 = m21|ϕ0=0◦,ϕ=180◦ , m12 = m21|ϕ0=180◦,ϕ=0◦ ;
m33 = m44|ϕ0=ϕ=0◦ , m33 = m44|ϕ0=ϕ=180◦ ,

m33 = m44|ϕ0=0◦,ϕ=180◦ , m33 = m44|ϕ0=1800,ϕ=0◦ ;
m34 = −m43|ϕ0=ϕ=0◦ , m34 = −m43|ϕ0=ϕ=180◦ ,

m34 = −m43|ϕ0=0◦,ϕ=180◦ , m34 = −m43|ϕ0=180◦,ϕ=0◦

m31 = m42|ϕ0=ϕ=0◦ , m31 = m42|ϕ0=ϕ=180◦ ,

m31 = m42|ϕ0=0◦,ϕ=180◦ , m31 = m42|ϕ0=180◦,ϕ=0◦ ;
m13 = m24|ϕ0=ϕ=0◦ , m13 = m24|ϕ0=ϕ=180◦ ,

m13 = m24|ϕ0=0◦,ϕ=180◦ , m13 = m24|ϕ0=180◦,ϕ=0◦

(22)

It is pointed out that (22) has no relation to the value of ψ
(q)
1 but we

should have ψ
(q)
2 = 0◦.

For the uniaxial bianisotropic cylinders (D∞) in Fig. 2, when the
outer surfaces are L-strips, i.e., ψ

(q)
2 = 90◦ at ρ

(q)
2 = R

(q)
2 , [M ] keeps

the same simple form as in (21) and no-depolarized effect in the scat-
tered fields can be expected even if ψ

(q)
1 �= 0◦ and θ0 �= 90◦ . So,

under such circumstances, the magnetoelectric cross coupling effects
in bianisotropic cylinders are completely shielded by the L-strips and
the cylinders are just “isotropic”.

Figure 3 depicts [muv] as a function of ϕ for four parallel eccen-
tric bianisotropic cylinders corresponding to the magnetic symmetry
groups D∞(C∞) , and both T-strips and L-strips at ρ

(q)
2 = R

(q)
2 (q =

1, 2, 3, 4) are considered, respectively. All the geometrical parameters
and the operating frequency are the same as in Table 1. In addi-
tion, we have kbR

(q)
1 = 0.5kbR

(q)
2 = 2.0kbd

(q)
c = 1.0, kbD

(1) = 20.0,
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(a) θ0 = 90◦, ψ
(q)
1 = 45◦, ψ

(q)
2 = 0◦ (T-strips)

(b) θ0 = ψ
(q)
1 = 45◦, ψ

(q)
2 = 90◦ (L-strips)

Figure 3. muv (uv = 11, 12) as functions of ϕ0 and ϕ .

kbD
(2) = 40.0, kbD

(3) = 60.0),
[
µ(1,q)

]
= µ0I,

[
ξ(1,q)
e

]
=

[
ξ(1,q)
m

]
= j10−5I,

[
ε(1,q)

]
= ε0




2.0 −j0.3 0
j0.3 2.0 0
0 0 2.5



 ,

[
ε(2,q)

]
= ε0




5.0 −j0.6 0
j0.6 5.0 0
0 0 5.5



 ,

µ
(2,q)
1 = µ0

{
1 + ω

(2,q)
0 ω(2,q)

m /
[
ω

(2,q)2

0 − ω2
]}

,

µ
(2,q)
12 = −µ0ωω(2,q)

m /
[
ω

(2,q)2

0 − ω2
]
,

ω(2,q)
m = 2.21 × 105M (2,q)

s , M (2,q)
s µ0 = 0.275T,

ω
(2,q)
0 /ω(2,q)

m = 0.3, µ
(2,q)
2 =µ0,

and

[
ξ(2,q)
e

]
= −

[
ξ(2,q)
m

]
= j

√
µ0ε0




0.6 −0.5 0
0.5 0.6 0
0 0 0.8



 (D∞(C∞)).
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In Figs. 3a, b, the inner layer of four parallel eccentric cylinders is
assumed to be the ordinary gyroelectric medium, respectively, while
the outer layer is bianisotropic and the magnetic anisotropy is just in
the gyrotropic from [23]. In cases (a) and (b) there only exist the
co-polarized components in the scattered fields (m11 = m22, m12 =
m21, m33 = m44, m34 = −m43, m13,14,23,24,31,32,41,42 = 0) . Since
θ0 = 90◦ in case (a), fewer resonant peaks in the total scattered field
intensity m11 are developed, but the maximum of peak is much more
larger than that of the oblique incidence in case (b). Also, various
numerical tests prove that (19a, b) only hold true for the eccentric
bianisotropic cylinders with the magnetic symmetry group D∞(C∞) ;
and they are not satisfied for the magnetic symmetry groups C∞v(C∞)
and C∞h(C∞) . For instance, in case (a),

muv

(
θ0 = 90◦, ψ(R)

1 , ψ
(L)
1 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
= muv

(
θ0 = 90◦,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])∣
∣
∣
ψ

(q)
2 =0◦

(D∞(C∞)) (23a)

muv

(
θ0 = 90◦, ψ(R)

1 , ψ
(L)
1 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
�= muv

(
θ0 = 90◦,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(C∞v(C∞), C∞h(C∞))(23b)

and for the oblique incidence, besides (23a, b) we have

mũṽ

(
θ0, ψ

(R)
1 , ψ

(L)
1 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
= −mũṽ

(
1800 − θ0,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])∣
∣
∣
ψ

(q)
2 =0◦

(D∞(C∞)) (24a)

mũṽ

(
180◦ − θ0, ψ

(R)
1 , ψ

(L)
1 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])
�= −mũṽ

(
180◦ − θ0,

180◦ − ψ
(R)
1 , 180◦ − ψ

(L)
1 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(C∞v(C∞), C∞h(C∞))(24b)

In case (b), only (23a, b) exist for any incident direction θ0(�= 0◦, 180◦).
So under such circumstances, muv are good indicators for distinguish-
ing the bianisotropics between D∞(C∞) and C∞v(C∞) or C∞h(C∞) .
On the other hand, it can be predicated that similar conclusions can be
drawn for another kinds of linear arrays made of inhomogeneous cylin-
ders such as impedance cylinders eccentrically coated with these bian-
isotropic media or ordinary gyrotropic media

(
i.e.,

[
ε(l,q)

]
= I,

[
ξ
(l,q)
e

]

=
[
ξ
(l,q)
m

]
= 0I

)
.
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Finally, Fig. 4 depicts the extinction and scattering cross sections
per unit length of four parallel eccentric bianisotropic cylinders as a
function of ϕ0(ϕ = 180◦+ϕ0) corresponding to different ψ

(q)
l , and all

the constitutive parameters are the same as in Fig. 3 for the magnetic
symmetry group D∞(C∞) .

In Fig. 4, both CTM
sca and CTE

sca are normalized to 4R
(1)
2 each other,

and the convergence behavior of the truncation terms in the series
summation has also been checked here (N0 ≥ 8) . In case (a) we
choose ψ

(q)
2 = 90◦ (L-strips) and in case (b) the helical conductances

on ρ
(q)
1 = R

(q)
1 and ρ

(q)
2 = R

(q)
2 are all in the RH form (ψ(q)

1 = ψ
(q)
2 =

45◦) . In case (c) we let ψ
(q)
2 = 45◦ (RH), ψ

(q)
1 = 135◦ (LH) , and

just ψ
(q)
1 + ψ

(q)
2 = 180◦ . It is shown that in case (a) CTM

sca < CTE
sca ,

and conversely, in cases (b), (c) CTM
sca > CTE

sca . On the other hand,
comparing case (c) with (b) or (a), it is clear that very high resonant
peaks are observed and strong resonant scattering takes place under the
conditions of θ0 = ψ

(q)
2 = 45◦, ψ

(q)
1 = 135◦ . At low-frequency, we know

that the resonance phenomenon for a magnetodielectric rod with an
anisotropic helical conductance surface has already been examined in
[4]. However, such resonant scattering can be damped by introducing
the T- or L-strips at ρ

(q)
2 = R

(q)
2 . Changing the magnetic symmetry

groups from D∞(C∞) to C∞v(C∞) or C∞h(C∞) , numerical tests
show that,

CTM(TE)
sca

(
θ0, ψ

(R)
1 , ψ

(L)
1 , ψ

(R)
2 , ψ

(L)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])

= CTM(TE)
sca

(
1800 − θ0, 180◦ − ψ

(R)
1 , 180◦ − ψ

(L)
1 , 180◦ − ψ

(R)
2 ,

180◦ − ψ
(L)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(D∞(C∞)) (25)

CTM(TE)
sca

(
θ0, ψ

(R)
1 , ψ

(L)
1 , ψ

(R)
2 , ψ

(L)
2 ,

[
ξ(l,m)
e

]
,
[
ξ(l,q)
m

])

�= CTM(TE)
sca

(
180◦ − θ0, 180◦ − ψ

(R)
1 , 180◦ − ψ

(L)
1 , 180◦ − ψ

(R)
2 ,

180◦ − ψ
(L)
2 ,

[
ξ(l,m)
m

]
,
[
ξ(l,q)
e

])
(C∞v(C∞), C∞h(C∞)) (26)

Here, (25) is applicable for the magnetic symmetry groups D∞ (1◦) in
(17a) and C∞v (4◦) in (18a). For other groups such as 2◦ (17b), 3◦

(17c), 5◦ (18b) and 6◦ (18c), (25) is not obtainable by the above chiral
operation and only (26) is true. Furthermore, same conclusions can be
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(a) θ0 = ψ
(q)
1 = 45◦ , and ψ

(q)
2 = 90◦ (L-strips)

(b) θ0 = ψ
(q)
1 = ψ

(q)
2 = 45◦

Figure 4. The scattering cross sections for four parallel eccentric bian-
isotropic cylinders

(
circular dot : CTM

sca /
(
4R

(1)
2

)
; square dot:

CTE
sca /

(
4R

(1)
2

) )
.
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(c) θ0 = ψ
(q)
2 = 45◦, ψ

(q)
1 = 135◦

Figure 4. Continued.

drawn for the excitation section for these group sets. So, (25) and (26)
provide another ways for diagnosing the constitutive characteristics of
bianisotropic cylindrical objects.

5. CONCLUSION

In the present contribution, our attention has been paid to the multi-
ple scattering by a linear array of bianisotropic eccentric two-layered
cylinders possessing double RH or LH helical conductances of the sur-
faces. The globe effects of bianisotropics on the Mueller matrix and
scattering cross section are explored. Corresponding to various mag-
netic symmetry groups, some unique and novel relations that govern
the 16 elements of Mueller matrix or scattering and excitation cross
sections in the far-field scattering region are developed under certain
chiral operations. These general relations are not restricted to the
bianisotropic cylinder linear array and the the random array. They
are also applicable to the ordinary gyroelectromagnetic case as long as
the cylinders are parallel and infinitely long with eccentric or concentric
circular cross sections.
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APPENDIX A

For the obliquely incident wave of TE-polarization with respect to the
z-axis, we have

H
(q)
zinc = H0 sin θ0e

jδ(q)
∞∑

m=−∞
jmJ

(q)
m2e

−jm
(
ϕ

(q)
2 −ϕ0

)
e
(q)
2 , q = 1, 2, . . . , N

(A1)
so in the region ρ

(q)
2 ≥ R

(q)
2 ,

H
(q)
zb =H

(q)
zinc+

∞∑

m=−∞





c(q)
m H

(q)
m2+J

(q)
m2




q−1∑

g=1

C(g)
mq+

N∑

h=q+1

C(h)
mq









e
(q)
ϕ2 (A2)

E
(q)
zb =

∞∑

m=−∞





d(q)

m H
(q)
m2 + J

(q)
m2




q−1∑

g=1

D(g)
mq +

N∑

h=q+1

D(h)
mq









e
(q)
ϕ2 (A3)

E
(q)
ϕb =

∞∑

m=−∞

β cos θ0

k2
b sin2 θ0



d(q)
m
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(q)
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and

C(g)
mq

(
D(g)

mq

)
=

∞∑

l=−∞
c(g)
m

(
d(g)

m

)
H

(2)
l−m

(
kb0D

(gq)
)

ej(l−m)ϕ0 , g < q, (A6)
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C(h)
mq

(
D(h)

mq

)
=

∞∑

l=−∞
(−1)l+mc(h)

m

(
d(h)

m

)
H

(2)
l−m

(
kb0D

(hq)
)

ej(l−m)ϕ0 ,

h < q (A7)

On the other hand, the field components in bianisotropic coatings can
be expressed in a similar form as (8). At ρ

(q)
2 = R

(q)
2 , we have

∞∑

n=−∞

[
D

(q)′

1n+V (q,1)
nm
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To solve the unknown scattering coefficients c(d)(q)m from (A8)–(A11),
the summation should be also truncated to a finite size.
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