ELECTROMAGNETIC WAVES PIER 32

Progress

In

Electromagnetics

Research
ELECTROMAGNETIC WAVES

Progress
In
Electromagnetics
Research

Chief Editor: J. A. Kong

Geometric Methods for
Computational
Electromagnetics

Editor: F. L. Teixeira

EMW Publishing
Cambridge, Massachusetts, USA
PREFACE

This volume of the PIER series presents a collection of original as well as review papers dealing with geometric methods for computational electromagnetics.

The term geometric is used here in a broad sense to include discretization methods for Maxwell’s equations which 1) do not rely solely on the vector calculus language, or 2) recognize and explore the fundamental distinction between the metric and topological discretization problems, or 3) have a strong coordinate independent flavor. As a result, we encounter here a variety of themes and perspectives. This is augmented by the fact that the authors’ background is diverse, including applied mathematicians, engineers, and physicists, perhaps a consequence of the perception of computational electromagnetics as a symbiotic combination of these disciplines. Moreover, some papers are distinctively programmatic while others are more concrete in their objectives. The careful reader will nevertheless perceive many similarities and a convergence of some fundamental concepts and themes. This cannot always be appreciated from isolated journal articles, but it is our objective that in a monograph such as this, the relationships between the different perspectives can be better appreciated. It is also our hope that the collection of papers presented here will foster interactions among workers pursuing different approaches and open new research vistas.

The contributions were organized into four sections. This classification is somewhat arbitrary and the different sections are far from independent. Some papers included in one section could also fit well into a different one.

The first section contains five papers dealing with fundamental aspects of geometric methods, and includes some review papers.

In Chapter 1, Tonti presents a tutorial on his finitary formulation of electromagnetic theory from first principles. Because this formulation leads to a finite set of algebraic equations directly (i.e., without the need to resort to the usual discretization of the differential equations), it is relevant to computational electromagnetics. Also presented in detail are the so-called Tonti diagrams, particularized for electromagnetic fields.

In Chapter 2, Bossavit discusses, from a geometrical standpoint, the fundamental links between finite difference, finite element, and finite volume discretizations, stressing the special role of finite elements in the convergence and error analysis. The general advantages stemming from the use of exterior differential forms for discretization analysis are addressed. The rationale behind the use of Whitney forms
as the basic interpolants, and the interpretation of the Galerkin method as a realization of discrete Hodge operators (i.e., discrete material laws incorporation all metric information) are also considered. The end result is a powerful unified picture of finite methods.

Clemens and Weiland review in Chapter 3 the main attractive features of the finite integration technique (FIT), and discuss its close connections with other discretization schemes for Maxwell’s equations. They also use basic algebraic properties of the method to prove charge and energy conservation in the discrete setting.

In Chapter 4, Hyman and Shashkov review the application of mimetic finite difference methods in nonorthogonal, nonsmooth grids for Maxwell’s equations. This effective discretization approach is based on the construction of discrete analogues of vector and tensor operators (and its adjoints) which automatically satisfy discrete analogs of the theorems of vector (and tensor) analysis. Both hyperbolic and parabolic diffusion regimes are considered. A convergence study for the method in smooth and non-smooth grids is included.

In Chapter 5, Mattiussi unveils basic geometric and topological concepts behind the time evolution equations usually encountered in computational electromagnetics. He advocates the use of a truly space-time approach to associate physical quantities with domains and in setting up the corresponding discrete equations. Because the balance laws do not depend on the size or shape of the (space-time) domain, these resulting space-time equations are topological in nature. This philosophy is broad enough to encompass many discretization techniques, such as FDTD, FIT or DSI, and, by recognizing the role of the constitutive equations, even higher order methods or implicit methods.

The second section of this volume includes five papers dealing with (co)homological and/or algebraic techniques for the spatial discretization problem.

Gross and Kotiuga consider in Chapter 6 the problem of exploring the topological structure of finite element algorithms via the identification of tetrahedral meshes with simplicial complexes. This leads to the construction of efficient data structures for the resulting numerical algorithms. By using a discrete form of the Poincaré duality theorem, this also allows the identification of the coboundary operators as the connection matrix for the dual complex. In addition, they discuss the role of Whitney forms as a bridge between the vector field picture and the cohomological picture and illustrate some three-dimensional applications of the theory.

In Chapter 7, Teixeira combines a geometric scheme, first developed for Chern-Simons theory, with Whitney forms to discretize
Maxwell’s equations on a simplicial grid. The scheme employs a barycentric decomposition of the simplicial primal grid and the non-simplicial dual grid, leading to a natural construction of Hodge operators directly from the Whitney forms on the resulting barycentric subdivision grid.

In Chapter 8, Tarhasaari and Kettunen express Maxwell’s equations as relations using concepts from naive set theory and develop an elegant algorithm based on linear algebra to tackle topological problems underlying a electromagnetic boundary value problem. One of the objectives here is to illustrate a methodology to develop data-driven approaches (instead of the usual method-driven approaches) to computational electromagnetics.

In Chapter 9, Gross and Kotiuga discuss an algorithm to make cuts for scalar magnetic potentials in three-dimensional multi-connected finite-element calculations. The algorithm is based on the algebraic structures of (co)homology theory. They also examine the computational complexity of the resulting algorithm and emphasize the fundamental distinction between the two- and three-dimensional problems.

In Chapter 10, Hiptmair discusses, from an algebraic standpoint, general properties and constraints for consistent discretizations of Hodge operators, and includes an abstract error analysis based on energy norms. The same author describes in Chapter 11 a unified and systematic approach to construct higher order finite element basis, based on interpolants of discrete differential forms (Whitney forms). This constitutes a novel and interesting foundation for p-refinement methodologies as well as for hierarchical a posteriori error estimators.

The third section contains four papers devoted to further analysis of geometric techniques discussed in the first section, with emphasis on applications.

In Chapter 12, Schuhmann and Weiland provide a detailed study of energy conservation laws under both the semi-discrete (continuous time) and the fully discrete setting of the finite integration technique of Chapter 3, as well as a study of the orthogonality of discrete eigenmodes. They also show how these results are all rooted in a few key properties of the technique.

Marrone describes and implements in Chapter 13 a geometric discretization method for Maxwell’s equations, dubbed cell method, based on Tonti’s formulation of Chapter 1. He includes a comparison against FDTD numerical results for cavity problems.

The contribution of van Rienen in Chapter 14 deals with an extension and frequency-domain implementation of the finite integration technique of Chapter 3 to arbitrary triangular grids.
Several numerical simulation of resonators and waveguide structures are provided to illustrate the technique.

In Chapter 15, Buksas develops an implementation of the perfectly matched layer (PML) absorbing boundary condition in conjunction with the mimetic finite difference schemes described in Chapter 4. The PML implementation is based on the anisotropic medium formulation.

Finally, the last section consists of the paper by Puska in Chapter 16, which has his own theme. The author uses Clifford’s geometric algebra to tackle constitutive relations in a covariant manner. Although not written for numerical purposes in mind, this interesting paper serves to illustrate the power and adequacy of geometric techniques in a strict analytical setting as well.

As a guest editor, I wish to thank Prof. J. A. Kong for his support and encouragement. I would also like to thank P. R. Kotiuga for his suggestions, and C. O. Ao and W. Zhen for the editorial support. Finally, I would like to express my gratitude and appreciation to the authors and reviewers for their contribution to this project.

F. L. Teixeira
Columbus, Ohio
CONTENTS

I. Geometric Methods and Discrete Electromagnetics

Chapter 1. FINITE FORMULATION OF THE ELECTROMAGNETIC FIELD

E. Tonti

1 Introduction ... 2
2 Finite Formulation: the Premises 4
 2.1 Configuration, Source and Energy Variables 4
 2.2 Global Variables and Field Variables 5
3 Physical Variables and Geometry 7
 3.1 Inner and Outer Orientation 8
 3.2 Time Elements .. 9
 3.3 Global Variables and Space-time Elements 10
 3.4 Operational Definition of Six Global Variables 12
 3.5 Physical Laws and Space-time Elements 17
 3.6 The Field Laws in Finite Form 18
4 Cell Complexes in Space and Time 20
 4.1 Classification Diagram of Space-time Elements 25
 4.2 Incidence Numbers 25
 4.3 Constitutive Laws in Finite Form 30
 4.4 Computational Procedure 31
 4.5 Classification Diagrams of Physical Variables 32
5 The Relation with Differential Formulation 33
 5.1 Relation with Other Numerical Methods 35
 5.2 The Cell Method 39
6 Conclusion ... 40
Acknowledgment .. 41
References ... 41

Chapter 2. ‘GENERALIZED FINITE DIFFERENCES’ IN COMPUTATIONAL ELECTROMAGNETICS

A. Bossavit

1 Introduction ... 45
2 Differential Forms, and the Equations 47
3 Discretization ... 49
<table>
<thead>
<tr>
<th>Chapter 3. DISCRETE ELECTROMAGNETISM WITH THE FINITE INTEGRATION TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Clemens and T. Weiland</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>2 Algebraic Properties of the Matrix Operators</td>
</tr>
<tr>
<td>3 Algebraic Properties of the Discrete Fields</td>
</tr>
<tr>
<td>4 Discrete Fields in Time Domain</td>
</tr>
<tr>
<td>5 Conclusion</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. MIMETIC FINITE DIFFERENCE METHODS FOR MAXWELL’S EQUATIONS AND THE EQUATIONS OF MAGNETIC DIFFUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. M. Hyman and M. Shashkov</td>
</tr>
<tr>
<td>1 Introduction and Background</td>
</tr>
<tr>
<td>2 Discrete Function Spaces and Inner Products</td>
</tr>
<tr>
<td>2.1 Discrete Scalar and Vector Functions</td>
</tr>
<tr>
<td>2.2 Discrete Inner Products</td>
</tr>
<tr>
<td>3 Discretization of the Curl Operators</td>
</tr>
<tr>
<td>3.1 Discretization of curl \vec{E}</td>
</tr>
<tr>
<td>3.2 Discretization of ϵ^{-1} curl $\mu^{-1} \vec{B}$</td>
</tr>
<tr>
<td>4 Discretization of the Divergence and Gradient</td>
</tr>
<tr>
<td>4.1 Discretization of div \vec{B}</td>
</tr>
<tr>
<td>4.2 Discretization of div $\epsilon \vec{E}$</td>
</tr>
<tr>
<td>4.3 Discrete Gauss’ Law</td>
</tr>
<tr>
<td>5 Finite-Difference Method</td>
</tr>
<tr>
<td>5.1 Maxwell’s curl Equations</td>
</tr>
<tr>
<td>5.2 Magnetic Diffusion Equations</td>
</tr>
<tr>
<td>5.3 Rectangular Grids</td>
</tr>
<tr>
<td>6 Numerical Examples</td>
</tr>
</tbody>
</table>

References
Chapter 5. THE GEOMETRY OF TIME-STEPPING

C. Mattiussi

1 Introduction ... 124
2 The Founding Equations 125
3 The FDTD Time-Stepping Reconsidered 129
4 Topological Time-Stepping 137
5 The Missing Link 142
6 Generalizations .. 145
7 Conclusions ... 148
References .. 148

II. Homological and Algebraic Techniques

Chapter 6. DATA STRUCTURES FOR GEOMETRIC AND TOPOLOGICAL ASPECTS OF FINITE ELEMENT ALGORITHMS

P. W. Gross and P. R. Kotiuga

1 Introduction ... 152
2 The Complex Encoded in the Connection Matrix ... 154
2.1 Background and Definitions 154
2.2 From Connection Data to Chain Groups 156
2.3 Considerations for Cellular Meshes 157
3 The Cochain Complex 158
3.1 Simplicial Cochain Groups and the Coboundary Operator 158
3.2 Coboundary Data Structures 159
4 Application: Whitney Forms 160
4.1 Example: The Helicity Functional 161
Chapter 7. GEOMETRIC ASPECTS OF THE SIMPLICIAL DISCRETIZATION OF MAXWELL’S EQUATIONS
F. L. Teixeira

1 Introduction .. 172
1.1 Outline ... 173

2 Discretization of the Topological Equations 174
2.1 Simplicial Lattices and Complexes 174
2.2 Pairing and Incidence Matrices 175
2.3 Complexes and Orientation 177

3 Discretization of the Metric Equations 177
3.1 Discrete Hodge Operators 177
3.2 Whitney and de Rham Maps 178

4 Dual Lattices and Barycentric Subdivision 179
4.1 Hodge Duality in Topological Field Theories 179
4.2 Whitney Maps on the Dual Lattice via Barycentric Subdivision 180

5 Conclusions .. 183

References .. 184

Chapter 8. TOPOLOGICAL APPROACH TO COMPUTATIONAL ELECTROMAGNETISM
T. Tarhosaari and L. Kettunen

1 Introduction .. 190

2 Maxwell Equations as Relations 191

3 Topological Problem 193

4 Exact Sequences and Decompositions 194

5 Bounded Domains 195
Chapter 9. FINITE ELEMENT-BASED ALGORITHMS TO MAKE CUTS FOR MAGNETIC SCALAR POTENTIALS: TOPOLOGICAL CONSTRAINTS AND COMPUTATIONAL COMPLEXITY

P. W. Gross and P. R. Kotiuga

1 Introduction and Outline .. 208
 1.1 Electromagnetic and Numerical Scenario 209
 1.2 Are Cuts Worth the Trouble? 211
 1.3 Outline ... 212

2 Definitions and Development of Topological Tools 213
 2.1 (Co)Homology Groups ... 214
 2.2 Poincaré-Lefschetz Duality via Explicit Constructions 216
 2.3 The Isomorphism $H^1(R; \mathbb{Z}) \simeq [R, S^1]$ 219

3 The Variational Formulation of the Cuts Problem 220

4 The Connection between Finite Elements and Cuts 221
 4.1 The Role of Finite Elements in a Cuts Algorithm 221

5 Computation of 1-Cocycle Basis 226
 5.1 Definitions ... 226
 5.2 Formulation of a 1-Cocycle Generator Set 228
 5.3 Structure of Matrix Equation for Computing the 1-
 Cocycle Generators ... 230
 5.4 The Size of U_{22} ... 235

6 Summary and Conclusions .. 236

Acknowledgment .. 236

Appendix A. Mesh-Counting Arithmetic 236
 A.1 The Euler Characteristic $\chi(R)$ 236
 A.2 The Details behind Table 1.2 237

Appendix B. Why Finite Element Analysis of Magnetic Fields Is Easy Once Cuts Are in Hand 239

References .. 242
Chapter 10. DISCRETE HODGE-OPERATORS: AN ALGEBRAIC PERSPECTIVE
R. Hiptmair

1 Introduction .. 247
2 Discrete Differential Forms 249
3 Discrete Hodge Operators 252
4 Examples .. 257
5 Abstract Error Analysis 260
6 Estimation of Consistency Errors 264
References ... 266

Chapter 11. HIGHER ORDER WHITNEY FORMS
R. Hiptmair

1 Introduction .. 271
2 Exterior Calculus 273
3 Local Spaces .. 274
4 Degrees of Freedom 282
5 Hierarchical Bases 291
References ... 297

III. Implementation Aspects

Chapter 12. CONSERVATION OF DISCRETE ENERGY AND RELATED LAWS IN THE FINITE INTEGRATION TECHNIQUE
R. Schuhmann and T. Weiland

1 Introduction .. 301
2 Orthogonality Properties and Discrete Energy 304
3 Energy Conservation in the Discrete System 307
4 Orthogonality of Discrete Waveguide Modes 310
5 Conclusion ... 315
References ... 315
Chapter 13. COMPUTATIONAL ASPECTS OF THE CELL METHOD IN ELECTRODYNAMICS

M. Marrone

1 Introduction .. 318

2 Theoretical Aspects of the Cell Method 319
2.1 Space-Time Structure 319
2.2 Orientation of Geometrical Elements 321
2.3 Physical Global Variables of Electrodynamics 321
2.4 Electrodynamic Laws 323
2.5 Time Approximation 326
2.6 Stability ... 326

3 The Delaunay-Voronoi Method 327
3.1 Delaunay-Voronoi Grids 327
3.2 Constitutive Equations 329
3.3 Computational Algorithm 331
3.4 Limits of the Delaunay-Voronoi Method 332

4 The Microcell Method 333
4.1 Introduction 333
4.2 Barycentric Grids 333
4.3 Microcells .. 334
4.4 Microcells and the Cell Method 334
4.5 Constitutive Equations 335
4.6 Considerations on Maxwell-Ampère’s Law 341
4.7 Computational Algorithm 343
4.8 Considerations on Microcell Method 343

5 Computational Aspects of the Cell Method 344
5.1 Problem 1 .. 344
5.2 Problem 2 .. 348
5.3 Summary of Numerical Results 353

6 Conclusions .. 355

References .. 356

Chapter 14. FREQUENCY DOMAIN ANALYSIS OF WAVEGUIDES AND RESONATORS WITH FIT ON NON-ORTHOGONAL TRIANGULAR GRIDS

U. van Rienen

1 Introduction .. 358
2 FIT-Discretization on a Triangular Grid 364
 2.1 The Triangular Grid and its Dual Grid 364
 2.2 Continuity Conditions for the Non-Orthogonal Case . 367
 2.3 State Variables and Discrete Operators for the Triangu-
 lar Grid .. 368
 2.4 Error Behaviour 373
 2.5 Relation to Mixed Finite Elements 373

3 Examples ... 374
 3.1 Tuned Multicell Cavity 374
 3.2 Dispersion Relation for Loaded Waveguide 374
 3.3 Circular Waveguide with Capacitive Load 375
 3.4 Parameter Study for Loaded Ridged Waveguide 376

4 Conclusion and outlook 378

References ... 378

Chapter 15. IMPLEMENTING THE PERFECTLY
MATCHED LAYER ABSORBING BOUNDARY
CONDITION WITH MIMETIC DIFFERENCING
SCHEMES

M. W. Bukas

1 Background .. 384
 1.1 The PML Absorbing Boundary Condition 384
 1.2 Expressing the PML on General Grids 388
 1.3 Background on Mimetic Difference Schemes 389
 1.4 Application of Mimetic Difference Operators to
 Maxwell’s Equations 395

2 Implementation 396
 2.1 Combining the PML Equations and Mimetic Difference
 Operators .. 396
 2.2 Conversion to the Time Domain 397
 2.3 Discretization of the Equations 398

3 Test Problems and Results 399
 3.1 Radiation Problem on a Cartesian Grid 399
 3.2 Scattering Problem on a Polar Grid 402
 3.3 Skew Grid .. 406

4 Conclusions .. 407

Acknowledgment 409

References ... 410
IV. Geometric Algebra for Electromagnetics

Chapter 16. COVARIANT ISOTROPIC CONSTITUTIVE RELATIONS IN CLIFFORD’S GEOMETRIC ALGEBRA
P. Puska

1 Introduction ... 414
2 Electromagnetism in Clifford’s Geometric Algebra 414
3 Classifying Media 417
4 Variational Aspects 420
5 Duality Rotation 422
6 Discussion .. 424
Acknowledgment ... 424
Appendix A. Products of Clifford’s Geometric Algebra . 424
Appendix B. Field and Flux Vectors 425
References ... 426

AUTHOR INDEX ... 429