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Abstract—An analytical boundary condition for modeling the
electromagnetic properties of planar regular dense arrays of dipole
particles for oblique incidence of plane waves is developed. The regular
array is assumed to be dense which means that the dipole particles
are close to each other. The interaction between the dipole particles
is taken into account by interaction constant. The expression for
the interaction constant is written in analytical form and is used
for developing a transmission-line model for arrays of planar dipole
scatterers. The regular dense array is modeled as a shunt impedance
which is different for TM and TE polarizations.
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1. INTRODUCTION

Impedance boundary conditions have been used in many applications
in electromagnetics such as considering multilayered structures, thin
dielectric layers and surfaces [1, 2]. Numerical methods are used to
study reflection properties of arrays of resonant particles [3–5]. In
such complicated structures effective impedance boundary conditions
which connect the averaged electric field and the averaged current
simplify calculations. In this study an analytical model for dense
regular dipole arrays is developed. In the calculation of the local field
the approximate analytical full-wave theory for dense array is used.
Analytical approximation of the local field leads to a simple boundary
condition [6].

The reflection and transmission properties of plane waves in planar
regular arrays of dipoles are studied. The distance between dipoles is
denoted as a, and the dipoles are on a plane forming a planar dipole
array. The reflection and transmission coefficients for oblique incident
plane waves are considered. It is assumed that the distance between
inclusions a is small enough compared to the wave length, thus, we deal
with a dense array. Every particle is characterized by the polarizability
dyadic α. The dipole moment is obtained through the polarizability
dyadic and the local electric field as

p = α ·Eloc (1)

The interaction between dipoles is taken into account as follows. The
local field is a sum of the incident and interaction fields

Eloc = Eext + β · p (2)

where Eext is the external field, and the interaction dyadic β takes
into account the effect of the other dipoles. In the local field Eloc

which excites the reference dipole, the contribution from the distant
dipoles and from near-by dipoles are separated. The effect of the
distant dipoles located at distances larger than R is calculated through
averaging. The distance R is written as R = Ro = a/1.438, which is a
special number obtained from the quasi static value of the interaction
field [7]. Then there are no individual particles except the reference
particle inside the circle of radius Ro, as shown in Figures 1 and 2.
For the normal incidence this interaction dyadic is proportional to the
two-dimensional unit dyadic It : β = βIt, where [6]

β ≈ −j ω

So

η

4

(
1− 1

jkR0

)
e−jkR0 (3)
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Figure 1. Planar dipole array, oblique plane wave incidence.
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Figure 2. On the calculation of the local field, the effect of other
dipoles are taken into account as averaged sheet.

with η =
√
µ0/ε0, k = ω

√
ε0µ0 and So = a2.

In this paper we consider a more general case, namely, obliquely
incident plane waves. For planar dipole arrays the interaction dyadic is
written in terms of parallel (TM) and perpendicular (TE) polarization.
The imaginary parts of the polarizability factor and the interaction
constant obey a certain relation which is obtained by considering the
energy conservation requirement [8].

2. THEORY

Let us consider an array of dipole particles which are located on xy-
plane (for example, disks or wire line dipoles on the xy-plane). Because
the distance between the dipole particles is small compared to wave
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length, ka < 1, there is strong coupling between the dipoles. The
interaction caused by all the other dipoles is taken into account through
the interaction constant which for oblique incident field is different for
TM and TE polarizations. For oblique incidence the interaction dyadic
for a planar array is written in the form

β = β‖
KK
K2

+ β⊥
(uz ×K)(uz ×K)

K2
(4)

where the vector K is the component of the wave vector on the array
plane. The interaction constants for these two eigenpolarizations are
obtained through integration; the effect of the other dipoles on array
to the reference dipole are taken into account as averaging. The local
field caused by the other dipoles is [7]

Eloc =
1

4πεSo

∞∫
R

2π∫
0

[
k2(n× p)× n + [3n(n · p)− p]

(
1
r2

+
jk

r

)]

e−jkre−jKr cosϕ dϕdr (5)

where n = cosϕux + sinϕuy and p = pxux + pyuy. The x and y-
components (ux = K

K and uy = uz×K
K ) of the interaction dyadic can be

identified from the above integral expression. Writing this expression

as in (2) and (4), and omitting the terms with
2π∫
0

sinϕ cosϕdϕ = 0, the

interaction constants are

β‖ =
1

So4πε

∞∫
R

2π∫
0

[
k2 sin2 ϕ + (3 cos2 ϕ− 1)

(
1
r2

+
jk

r

)]

e−jkre−jKr cosϕdrdϕ (6)

and

β⊥ =
1

So4πε

∞∫
R

2π∫
0

[
k2 cos2 ϕ + (3 sin2 ϕ− 1)

(
1
r2

+
jk

r

)]

e−jkre−jKr cosϕdrdϕ (7)

Writing sin2 ϕ = 1
2 [1− cos 2ϕ] and cos2 ϕ = 1

2 [1+cos 2ϕ] and using the
integral identity [9]

2π∫
0

e−jγ cosx cosnx dx = (−j)n2πJn(γ) (8)
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these double integral expressions are reduced to one-dimensional
integral forms:

β‖ =
1

4πεSo

∞∫
R

π

[(
k2 +

1
r2

+
jk

r

)
J0(Kr)

+
(
k2 − j3k

r
− 3

r2

)
J2(Kr)

]
e−jkrdr (9)

and

β⊥ =
1

4πεSo

∞∫
R

π

[(
k2 +

jk

r
+

1
r2

)
J0(Kr)

−
(
k2 − j3k

r
− 3

r2

)
J2(Kr)

]
e−jkrdr (10)

After that, integrating by parts and using the identities for the Bessel
functions with index n = 0, 1, 2

2nJn(x)
x

= Jn−1(x) + Jn+1(x), 2J ′n(x) = Jn−1(x)− Jn+1(x) (11)

leads finally after some algebra (see Appendix A) to the following quite
simple-looking expressions

β‖ =
1

2εSo

[(
−

(
1
R

+ jk

)
J1(KR)
KR

+
J0(KR)

R

)
e−jkR

−K2

∞∫
R

J1(Kr)
Kr

e−jkrdr


 (12)

and

β⊥ =
1

2εSo

[((
1
R

+ jk

)
J1(KR)
KR

− jkJ0(KR)
)
e−jkR

+jkK

∞∫
R

J1(Kr)e−jkrdr


 (13)

Part of the remaining integrals can be written in closed form [9]

∞∫
R

J1(Kr)
Kr

e−jkrdr = − j

k +
√
k2 −K2

−
R∫

0

J1(Kr)
Kr

e−jkrdr (14)
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and

∞∫
R

J1(Kr)e−jkrdr = − K√
k2 −K2(k +

√
k2 −K2)

−
R∫

0

J1(Kr)e−jkrdr

(15)
The remaining integrals are calculated approximatively. Because Kr
is small in the integration range (R = a/1.438 and K < k and ka < 1)
the integrands can be approximated as J1(Kr)

Kr ≈ 1
2 and J1(Kr) ≈ Kr

2 ,
then

R∫
0

J1(Kr)
Kr

e−jkrdr ≈ 1
j2k

(
1− e−jkR

)
(16)

and
R∫

0

J1(Kr)e−jkrdr ≈ K

2k2

[
(1 + jkR) e−jkR − 1

]
(17)

Finally, the interaction constants are

β‖ = − jk

2εSo

[(
J1(KR)
KR

− 1
jkR

[
J0(KR)− J1(KR)

KR

]
− K2

2k2

)
e−jkR

− K2

k(k +
√
k2 −K2)

+
K2

2k2

]
(18)

and

β⊥ = − jk

2εSo

[([
J0(KR)−J1(KR)

KR

]
− 1

jkR

J1(KR)
KR

+
K2

2k2
(1 + jkR)

)

e−jkR +
K2

√
k2 −K2(k +

√
k2 −K2)

− K2

2k2

]

(19)

It is easily seen that for normal incidence, K → 0, both of these
expressions reduce to expression (3). Another approximate expression
for integrals (6), (7) was given in [10].

3. IMAGINARY PART OF β

As was shown in [6] and [8], for the normal incidence the imaginary
part of the polarizability factor and the interaction constant obey a
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certain relation based on the power conservation requirements. The
imaginary part of the interaction coefficients are considered in detail:

Im{β‖} = − k

2Soε

[
J1(KR)
KR

cos kR +
(
Jo(KR)− J1(KR)

KR

)
sin kR

kR

− K2

k(k +
√
k2 −K2)

+
K2

2k2
(1− cos kR)

]
(20)

and

Im{β⊥} = − k

2Soε

[(
Jo(KR)− J1(KR)

KR

)
cos kR +

J1(KR)
KR

sin kR

kR

+
K2

√
k2−K2(k+

√
k2−K2)

−K2

2k2
(1−cos kR)+

K2

2k2
kRsinkR

]

(21)

Next we denote cos θ =
√
k2 −K2/k and K = k sin θ. In the low

frequency limit, k → 0, these coefficients reduce to the form

Im{β‖} = − k

2Soε

[
cos θ −

(
3 cos2 θ + 1

12
+

sin2 θ

8

)
(kR)2

]

=

(
3 cos2 θ + 5

48π

)
πR2

So
ηµεω3 − ZTMω

2So
(22)

and

Im{β⊥} = − k

2Soε

[
1

cos θ
−

(
3 cos2 θ + 1

12
+

sin2 θ

8

)
(kR)2

]

=

(
3 cos2 θ + 5

48π

)
πR2

So
ηµεω3 − ZTEω

2So
(23)

where the expressions for the wave impedances ZTM = η cos θ and
ZTE = η/ cos θ are used. One can observe that the first term, which
is same for both polarizations, describes the dipole radiation in array
for oblique incidence. The second term is a plane wave term for TM
and TE polarizations, respectively.

The whole array radiates plane waves whose eigenvectors are K
K

and uz×K
K . The planar polarizability dyadic is written in terms of the

eigenvectors (here it is assumed that there is no coupling between the
eigenpolarizations)

α = α‖
KK
K2

+ α⊥
(uz ×K)(uz ×K)

K2
(24)
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Assuming that there is no absorption in the particles, every particle
in the array radiates the same power as spent by the incident field
on its excitation [8]. Based on this power conservation, the following
relations between the imaginary parts should be valid

Im
{
α−1
‖ − β‖

}
=

ZTMω

2So
, Im

{
α−1
⊥ − β⊥

}
=

ZTEω

2So
(25)

This kind of relations written in terms of TM and TE eigenvectors
are analogous to those for non-reciprocal inclusions for the normal
incidence when written by using circularly polarized eigenvectors [8].

4. IMPEDANCE AND REFLECTION DYADIC

The total averaged electric field in the plane of a dipole array is the sum
of the incident field and the plane-wave field created by the averaged
current J:

< Etotal >= Eext −
η

2
J (26)

With the polarizability dyadic α and the interaction dyadic β we
can write the total field in terms of the averaged current density.
Writing the current density on the array as J = jωp/a2, one obtains
< Etotal >= Zs · J, where Zs is the shunt impedance dyadic of a
regular array of dipoles. For the normal incidence with an isotropic
polarizability of inclusions the impedance reads

Zs =
a2

jω
Re

{
1
α
− β

}
It (27)

For oblique incidence the shunt impedances are different for
perpendicular (TE) and parallel (TM) polarizations.

The imaginary parts fulfill certain conditions based on the power
conservation. Considering the real parts the impedance model for the
dipole array is obtained. The real part of the interaction constants for
two polarizations are

Re
{
β‖

}
=

k

2εSo

[(
J0(KR)− J1(KR)

KR

)
cos kR
kR

−
(
J1(KR)
KR

− K2

2k2

)
sin kR

]
(28)

and

Re {β⊥} =
k

2εSo

[(
J1(KR)
KR

+
K2R2

2

)
cos kR
kR
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−
(
J0(KR)− J1(KR)

KR
+

K2

2k2

)
sin kR

]
(29)

For perpendicular polarization the interaction coefficient at low
frequencies can be compared with the accurate expression given in
[7, p. 784]. The value of this model is

β⊥→
1

πεa3

[
πa

4Ro
− 12 +sin2 θ

16
k2a2

1.438
+j

(
− ka

cos θ
+

3 cos2 θ + 5
24

k3a3

1.4382

)]

(30)
In [7] the expression contains infinite double summations. Taking the
first term in the infinite double sum, the expression for the interaction
constant is

C→ 1
πεa3

[ ∞∑
m=1

1
m3
−8π2K0(2π)− 0.7224 k2a2+j

(
− ka

2 cos θ
+

k3a3

6

)]

(31)
The two first terms together form the static interaction constant in
planar infinite arrays of dipoles (definition of Ro) from which the value
Ro = a/1.438 was obtained [7, p. 758, 784]. So, in the proposed
interaction constant and in the expression in [7] the zeroth and first
order terms are the same. In the second and third order terms there
are small differences caused by that here planar dipole scatterers are
considered, in [7] isotropic dipole array is considered.

The essential part in the expression for the impedance of the
array comes from the real parts of the polarizability dyadic and the
interaction dyadic

Zs‖ =
a2

jω
Re{α−1

‖ − β‖}, Zs⊥ =
a2

jω
Re{α−1

⊥ − β⊥} (32)

In the lossless case the impedance values are imaginary.
As a specific example, let us consider an array of small circular

conducting disks on xy-plane. The polarizability factor of a metal disk
is α = 16

3 εor
3 (a more accurate expression is α = 16

3 εor
3[1 + k2r2

15 ]) [7].
By using the expression for the impedance (32), the shunt impedance
of a regular array of circular disks is written for the two polarizations
as

Zs‖ =
η

jka

[
3
16

a3

r3
− a

2R

[(
J0(KR)− J1(KR)

KR

)
cos kR

− kR

(
J1(KR)
KR

− K2

2k2

)
sin kR

]]
(33)
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Figure 3. Reflection from the regular circular disk array for TE and
TM polarizations, r = 0.35a and θ = π/6.

and

Zs⊥ =
η

jka

[
3
16

a3

r3
− a

2R

[(
J1(KR)
KR

+
K2R2

2

)
cos kR

− kR

(
J0(KR)− J1(KR)

KR
+

K2

2k2

)
sin kR

]]
(34)

In a quasistatic limit, ω → 0, the shunt impedance reduces to
Zs = η

jka [
3
16
a3

r3
− 0.36] for both polarizations. Naturally, the shunt

impedance is capacitive. The reflection coefficients are obtained by
using the transmission-line model. The array is seen as a capacitive
shunt impedance between two transmission lines. The reflection
coefficients for transverse fields are

R‖ = − 1

1 +
2Zs‖
η cos θ

, R⊥ = − 1

1 +
2Zs⊥

η/ cos θ

(35)
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Figure 4. Reflection from the regular circular disk array for TE and
TM polarizations, r = 0.35a and θ = π/3.

The transmission dyadic is T = It+R. In Figures 3 and 4 the reflection
coefficients are illustrated as a function of the normalized period ka
with certain fixed angles. In these examples the radius of the disk is
r = 0.35 a. Reflection for TE polarization is stronger than the reflection
for TM polarization. In these Figures the effect of interaction is shown;
the solid lines illustrate the reflection coefficient with the dynamic
interaction, dashed line illustrate the reflection when taking quasistatic
interaction and dotted dashed lines when neglecting the interaction
between the dipoles in the array. It is seen that the interaction
increases the reflection from the array, however, the quasistatic model
for the dipole array seems to give too large values for the reflected
fields.
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5. CONCLUSION

For oblique incidence of plane waves the equivalent model is different
for the two eigenpolarizations, perpendicular (TE) and parallel (TM)
polarizations. In this case there is no coupling between TE and TM
polarization. Finally, the suggested procedure leads to a model where
the regular dense array is given as a shunt impedance, different for the
two polarizations. The reflection coefficients are solved by using the
transmission line model. As an example, the reflection from a dense
array of metal circular disks is considered. The equivalent model for
the array impedance is capacitive. The analytical model of a thin dense
array of dipoles for oblique incidence can be used for studying surface
waves propagating along the array and for material modeling of layered
dense arrays of small particles.

APPENDIX A.

After successive integration by parts the integral in expression (9) for
β‖ can be obtained straightforwardly in the form

I‖ = 4π
∣∣∣∣∞
R

(
1
r
+jk

)
e−jkr

J1(Kr)
Kr

+ π

∞∫
R

(
3
r2

+
j3k
r
− k2

)

e−jkr [J0(Kr) + J2(Kr)] dr (A1)

By subtracting and adding the term 4π
∞∫
R

( 1
r2

+ jk
r )e−jkrJ0(Kr)dr and

comparing the integral in (9), we have

I‖ = 4π
∣∣∣∣∞
R

(
1
r

+ jk

)
e−jkr

J1(Kr)
Kr

+4π
∞∫
R

(
1
r2

+
jk

r

)
e−jkrJ0(Kr)dr−I‖

(A2)
from which after applying integration by parts, finally

I‖ = 2π
[(
−

(
1
R

+ jk

)
J1(KR)
KR

+
J0(KR)

R

)
e−jkR

−K2

∞∫
R

J1(Kr)
Kr

e−jkrdr


 (A3)

For the perpendicular polarization, the integral expression in (10)
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is

I⊥ = π

∞∫
R

[(
k2 +

jk

r
+

1
r2

)
e−jkrJ0(Kr)

−
(
k2 − j3k

r
− 3

r2

)
e−jkrJ2(Kr)

]
dr (A4)

Previously in (9)

I‖ = π

∞∫
R

[(
k2 +

jk

r
+

1
r2

)
e−jkrJ0(Kr)

+
(
k2 − j3k

r
− 3

r2

)
e−jkrJ2(Kr)

]
dr (A5)

After eliminating the term
∞∫
R

(
k2 − j3k

r − 3
r2

)
e−jkrJ2(Kr)dr,

I⊥ = 2πk2

∞∫
R

e−jkrJ0(Kr)dr + 2π
∞∫
R

(
1
r2

+
jk

r

)
e−jkrJ0(Kr)dr − I‖

(A6)
and using (A2) one obtains

I⊥ = −2π
∣∣∣∣∞
R

(
1
r

+ jk

)
e−jkr

J1(Kr)
Kr

+ 2πk2

∞∫
R

e−jkrJ0(Kr)dr (A7)

which is after integrating by parts

I⊥ = 2π
[((

1
R

+ jk

)
J1(KR)
KR

− jkJ0(KR)
)
e−jkR

+jkK

∞∫
R

J1(Kr)e−jkrdr


 (A8)
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