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Abstract—In modeling scattering from lossy surfaces, the surface is
often approximated as a perfect electric conductor (PEC). However,
when loss and wave penetration become important, the IBC model is
typically employed and is adequate for many numerical simulations.
However, the IBC’s range of validity is considered unclear and
an accurate quantification of its error is difficult. Consequently,
other more exact implementations are necessary, such as integral
equation methods. In this paper, a novel numerical implementation
of the exact dielectric integral equations has been developed for
scattering from a two-dimensional (2D), lossy dielectric interface. The
formulation presented herein combines the coupled integral equations
to form a single equation. This equation is easily interpreted as the
magnetic field integral equation (MFIE) for a 2D, PEC surface with a
perturbative term related to the finite conductivity of the surface. The
advantage of this perturbation approach is that for ocean and other
high loss surfaces, the solution is expected to be rapidly convergent
with respect to other approaches and will reproduce the correct result
even for surfaces with small curvature radii. Test cases demonstrate
increased convergence with increased loss and increased contrast
for perpendicular polarization. However with parallel polarization,
convergence problems are uncovered and are associated with the
Brewster angle effect.
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1. INTRODUCTION

In considering scattering from the ocean or terrain, it is common
practice to model these surface as perfect electric conductors (PECs).
Many numerical techniques have improved the feasibility of simulating
low grazing angle incidence. Due to its computational efficiency,
a numerical technique of particular interest to the rough surface
scattering community is the Method of Multiple Ordered Interactions
(MOMI) [1], otherwise known as the Forward-Backward Method
[2]. More accurate simulations of natural surfaces, however, require
that the effects of the finite conductivity of seawater or the finite
conductivity of soil be included in the model. Hence, the incorporation
of these characteristics into the simulations are often achieved using
an analytical, impedance boundary condition (IBC). With highly
conductive seawater, this approximation seems applicable; however,
with terrain propagation, the loss tangent of soil at microwave
frequencies is significantly smaller than the corresponding loss tangent
of seawater, resulting in less accuracy for such surfaces. Additionally,
the error introduced by the IBC and its range of validity is unclear
when considering low grazing angle (LGA) scattering from surfaces
with significant high frequency spectral content. Consequently, one is
motivated to find a numerical approach for the dielectric problem that
will mimic the convergence properties of an efficient formulation for the
PEC surface (e.g., MOMI). Preliminary work on the application of the
MOMI to dielectric surfaces has been performed [3, 13]. Unfortunately,
the convergence properties were not comparable to the PEC result for
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the same geometry since the straight-forward application of MOMI
performs an upper/lower triangular factorization on singular operators.
In the following, a novel reformulation of the dielectric integral
equations is presented as an ‘exact’ alternative to the IBC formulation
of scattering from a two-dimensional, lossy-dielectric interface. This
work has been previously introduced by the authors [5, 6].

In the standard dielectric integral equations, a coupled pair are
solved [7] or in later works, a single equation is formed [8–10].
The formulation presented herein begins with the coupled integral
equations and combines them to form a single equation, each in
two-dimensions. Next, this single equation is rearranged so that it
reduces to the standard, magnetic field integral equation (MFIE)
for a two-dimensional perfect electrically conducting (PEC) surface.
For penetrable surfaces, the integral equation derived also contains
a perturbation term related to the finite conductivity of the surface.
The advantage of this perturbative approach is that for ocean and
other high loss or high contrast surfaces, the solution is expected to
be rapidly convergent with respect to other exact integral equation
approaches.

The new equations are derived for two-dimensional surfaces
in both perpendicular (H-pol) and parallel (E-pol) polarizations.
Fast convergence is demonstrated for the perpendicular polarization;
however, the parallel polarization formulation has revealed some
unique qualities of the integral equation itself. In support of these
assertions, a short discussion of the properties of the dielectric
equations is given. This discussion is followed by preliminary results
from a comparison of the Leontovich IBC for scattering from a two-
dimensional, lossy-dielectric interface. A complete comparison of
the Leontovich IBC and the exact equations will be communicated
elsewhere.

2. THE TWO-DIMENSIONAL DIELECTRIC INTEGRAL
EQUATIONS

In constructing the integral equation for scattering from a dielectric
surface, one begins with coupled integral equations: two each for
the lower and the upper media. In the upper medium, the following
relationships hold [11].

1
2
ψ(r) = ψinc(r) +

∫
S

(
∂G(r, r′)
∂n′

ψ(r′)− ∂ψ(r′)
∂n′

G(r, r′)
)
ds′ (1)

The region of integration, S, represents the electromagnetically active
surface. Strictly speaking, the integration over S involves an infinite
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surface and a “cap” at infinity. The reduction of this infinite problem
to the finite surface, S, above can be found in many standard
implementations of the MFIE for surface scattering, for example see
Kapp and Brown [1] and the references therein. For the Neumann
problem, the following integral equation is produced [11],

1
2
∂ψ(r)
∂n

=
∂ψinc(r)
∂n

+
∂

∂n

∫
S

(
∂G(r, r′)
∂n′

ψ(r′)−G(r, r′)
∂ψ(r′)
∂n′

)
ds′

(2)
The upper medium is characterized by an arbitrary, homogeneous
relative permittivity, ε1 = εr1 − jεi1; for simplicity, free space will
be used as the upper medium.

In order to simplify the notation, corresponding operator forms
for equations (1) and (2) will be used throughout this paper; these are
given in equations (3) and (4). Additionally, the normal derivative of
the field has been replaced by the expression ∂nψ. The operator form
for (1) is cast

1
2
ψ = ψinc +QDDψ −QDN∂nψ (3)

Likewise, the operator expression of (2)

1
2
∂nψ = ∂nψ

inc +QNDψ −QNN∂nψ (4)

A direct comparison of equations (1) and (3) yield the definitions
of operators, QDD and QDN ; likewise, a comparison of (2) and (4)
yield definition of the operators QNN and QND. A discussion of the
operators is given in greater detail below.

In describing the lower medium, a similar pair of integral equations
is created. For simplicity, these integral equations, (5) and (6) are
given in only operator form with the corresponding integral operators
implied. The functional form of these operators is the same as
previously defined in (3) and (4); however, the sign of each operator has
changed since the surface normal is pointing into the upper medium.

1
2
ψ = −Q̂DDψ + Q̂DN∂nψ (5)

1
2
∂nψ = −Q̂NDψ + Q̂NN∂nψ (6)

Since the medium constants have changed,the lower medium operators
are denoted with a “hat”, Q̂. The lower medium is also a homogeneous
dielectric with a complex, relative permittivity, ε2 = εr2−jεi2. Finally,
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although it is not a necessary restriction, the incident field is assumed
to be present in only the upper medium for simplicity.

Pursuing the properties of these operators yields valuable insight
into the behavior of the integral equations. Some useful properties
of these operators will now be reviewed for use in later sections.
The discussion begins with the two operators, QND and QDN . A
straightforward method to isolate the essential properties of these
operators is their application to a flat surface. The operator, QDN ,
is a smoothing operator representing the mapping of the field’s normal
derivative, ∂nψ into the field itself, ψ through the Green’s function.
This operation is referred to as a Neumann-to-Dirchlet mapping. In
electrical engineering, this transformation represents an impedance (or
admittance) mapping.

QDN∂nψ ≡
∫
S

G(r, r′)
∂ψ(r′)
∂n

ds′ −→ ψ(r) (7)

The dual operator, QND, is a hypersingular operator which maps the
field, ψ into its partial derivative, ∂nψ. For a given field, ψ , this
operation transforms the field (Dirchlet data) to the normal derivative
of the field (Neumann data).

QNDψ ≡
∂

∂n

∫
S

∂G(r, r′)
∂n′

ψ(r)ds′ −→ ∂nψ(r) (8)

It is understood that an appropriate limiting procedure must be used to
numerically treat the hypersingular kernel. The mappings between the
field and its normal derivative (∂nψ ↔ ψ) reveal an implicit impedance
transformation as discussed in [12].

The remaining two operators, QDD and QNN , are nonsingular
smoothing operators after the observation point is taken to the surface
and the singularity has been removed. These operators account for the
physical and nonphysical interactions on the surface of the scatterer
and are zero for a smooth surface. In the PEC, rough surface scattering
literature, these operators are encountered in the MFIE formulations.

QDDψ =
∫
S

∂G(r, r′)
∂n

ψds′ (9)

QNN∂nψ =
∫
S

∂G(r, r′)
∂n′

ψ(r′)
∂n

ds′ (10)

In the flat surface case, these operators are zero. These operators are
discussed in detail in [3].
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Beginning with the infinite planar scattering geometry, only two of
the four operators are required: QND and QDN . Since this special case
can be guided by known results, the properties of the two operators,
QND and QDN , will become apparent. Given an incident plane
wave, ψ = exp(−jkxx + jkzz), the continuous eigenvalue spectrum
for the hypersingular operator, QND, is found from (4) and is given by
(jkz/2). Consequently, the hypersingular operator accentuates high
spatial frequency components. As k2

x becomes large, the eigenvalues of
the hypersingular operator, QND, tend toward zero since k2

z = k2−k2
x.

Likewise, the eigenvalue spectrum of the second operator, QDN for the
planar surface problem is easily determined to be (−1/j2kz). This
operator filters the high spatial frequencies, tending to ‘smooth’ the
result.

Due to the complementary filtering properties of these operators,
their combination allows high spatial frequencies to pass without
significant attenuation or amplification; thus yielding a mesh stable
formulation. The following operator/integral identity quantifies this
observation.

QNDQDN = −1
4

(11)

This identity provides the basis for an advantageous integral
preconditioner: further details are provided by Adams [3].

It is interesting to observe for the grazing mode (kz = 0) that
the eigenvalue of QDN is infinite while the eigenvalue of QND is zero.
This behavior indicates that for a flat surface, the Neumann problem
supports a grazing surface wave while the Dirchlet problem does not. A
closer examination of the properties of these operators facilitates the
development of a direct, spatial-domain representation of the fields
excited at a planar dielectric interface [13].

3. NUMERICAL SOLUTION OF THE DIELECTRIC
INTEGRAL EQUATIONS

In this section the two-dimensional dielectric integral equations are
cast into a more computationally efficient form. The treatment
of the equations follows from the standard field decomposition into
perpendicular and parallel polarization. Treating these polarizations
separately, the dielectric equations for a surface are recast into a
form based on the perturbation of the perfectly conducting surface.
Examples and discussion of the properties of these equations are found
in the following sections
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3.1. Perpendicular Polarization (ψ → E)

Starting with the operator form of the integral equations (3) through
(6), in perpendicular polarization one replaces the the field quantity,
ψ, by the electric field intensity, E. Next, the field, E, in the lower
medium is found in terms of its normal derivative from equation (5).
Hence, from equation (5), solving for E,

E = 2
(
1 + 2Q̂DD

)−1
Q̂DN∂nE (12)

Although this expression requires the inversion of an operator with
N unknowns (e.g., a moment method matrix of dimension, N), fast
solution methods, such a the Method of Ordered Multiple Interactions
(MOMI)may be used for accelerating this inverse [1]. However, for
large conductivity, the inverse operation in (12) is computed in O(N)
operations due to the tightly banded nature of the lossy medium
operators; these operators become nearly diagonal.

The boundary condition on the electric field intensity requires that
the tangential E-field be continuous across an interface for material
with free space permeability (µ = µ0). In two dimensions with
perpendicular polarization, the electric field is always parallel (tangent)
to the surface for all incident angles. Consequently, assuming non-
magnetic media, the electric field E in the upper medium is the same as
the field E in the lower medium. Substituting this boundary condition
into equation (4), an integral equation for perpendicularly polarized
field incident on a two-dimensional, randomly rough dielectric surface
is constructed:

∂nE = 2∂nEinc − 2QNN∂nE + 4QND
(
1 + 2Q̂DD

)−1
Q̂DN∂nE (13)

The right side of this equation is a superposition of three terms. The
combination of the first two terms comprise the familiar result for
two-dimensional scattering from a surface which is a perfect electric
conductor (PEC). The first of these terms is Kirchhoff term and the
second incorporates multiple scattering. The last term of equation (13)
expresses the dielectric nature of lower medium through the dielectric
medium operators, Q̂DN and Q̂DD. Again, these operators are nearly
diagonal for high-loss surfaces; they essentially behave as diagonally
banded matrices with elements that decay exponentially due to the
loss. Hence, as one should expect, this last term will become a small
perturbation with respect to the PEC solution as loss is increased.

In the solution of these equations, the perturbative result for the
dielectric equation is found by gathering the PEC operators on the left,
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leaving the composite operator due to the lossy dielectric unchanged
and on the right.

(I + 2QNN )∂nE = 2∂nEinc + 4QND
(
1 + 2Q̂DD

)−1
Q̂DN∂nE (14)

Equation (14) describes the penetrable surface as a perturbative
adjustment to the PEC integral equation and can be discretized via
the Method of Moments (MoM). Rather than using matrix inversion,
however, the solution to this equation may again be obtained using
more efficient iterative methods. In this study, the MOMI is used.
This technique renormalizes the modified integral equation through the
re-summation of the dominant multiple scattering interactions on the
rough surface [1]. Consequently, the iterative solution is renormalized
using the following decomposition; the notation is consistent with the
paper by Kapp and Brown [1]

∂nE = 2(I − U)−1(I − L)−1∂nE
inc + (I − U)−1(I − L)−1LU∂nE

+4(I − U)−1(I − L)−1QND
(
1 + 2Q̂DD

)−1
Q̂DN∂nE (15)

The matrices L and U represent upper and lower triangular matrices,
respectively, found from the upper/lower triangular decomposition
of the operator on the left side of equation (14). Although simple
Neumann iteration was used, this equation is also amenable to solution
with Krylov methods including the conjugate gradient method.

A simple simulation was performed for the new dielectric integral
equation given by equation (15). A sinusoidal surface was chosen
with the following parameters (normalized to the electromagnetic
wavelength λ): the height is 1λ; the period is 30λ; and the total surface
length was 52λ. The incident field was chosen to be a perpendicularly
polarized Gaussian beam with a half power waist of 15λ, incident to the
surface at a 30◦ angle from the surface normal. Hence, this represents
a relatively smooth surface; however, it adequately demonstrates the
convergence properties of the new formulation as a function of dielectric
constants. The problem was discretized to the scale of the upper
medium wavelength. However, integration of the Green’s function was
performed on a scale proportional to the contrast. Discretizing to the
lower medium wavelength would only be necessary if a scatterer below
the surface, for example, generated field fluctuations at that scale.
Figure 1 demonstrates the convergence of the method for different
dielectric contrasts, εr2 and a fixed loss, εi2 = 5. Conversely, Figure 2
demonstrates the convergence of the method for varying amount of loss
in the media with a fixed dielectric contrast (εr2 = 5). As a reference,
the solution of the PEC problem to a normalized residual error of 10−3
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Figure 1. Perpendicular Polarization: Normalized residual error for
varying contrast between the media. Convergence of the perturbative
dielectric integral equation for a Gaussian beam incident on a cosine
surface.

required two iterations. Convergence for the dielectric problem to the
same normalized residual error behaved as expected;convergence was
more rapid for higher contrasts and greater loss in Figures 1 and 2,
respectively.

The number of iterations required to incorporate the effects of
the finite loss of the lower medium increases as the loss tangent of the
lower medium decreases. This behavior occurs since the numerical IBC
is developed as a perturbation of the magnetic field integral equation
for PEC surfaces. The various factors affecting the convergence of the
modified equation include loss tangent, surface roughness and angle of
incidence.

The advantage of the perturbation method with respect to the
impedance boundary condition is that it is exact and will reproduce
the correct result even for surfaces with significant curvature. The
errors in the numerical IBC considered here can be reduced to an
arbitrarily small level via iteration of the derived integral equation.
One physically important problem where one can expect this to be
significant is the problem of grazing backscatter from ocean surfaces.
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Figure 2. Perpendicular Polarization: Normalized residual error for
varying loss in the lower medium. Convergence of the perturbative
dielectric integral equation for a Gaussian beam incident on a cosine
surface.

For such problems, it is well known that the small wave structure
produces the primary contribution to the backscattered field. When
these contributions become important, the standard IBC may fail and
the present formulation will provide an advantage.

3.2. Comparison of Perpendicular Polarization with the IBC

For comparative purposes, consider the Leontovich Impedance
Boundary Condition (LIBC). This model is often implemented for
scattering from two-dimensional surface scattering problems due to
the simplicity with which it is implemented as well as its typically
adequate results. For perpendicular polarization, the LIBC specifies a
relationship between the field and it’s normal derivative on the surface
[14].

E = − j
k

√
ε1
ε2

∂E

∂n
(16)

Surface parameters for the appropriate application of the impedance
boundary condition have been outlined by Wang [15]. Assuming
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free space in the upper medium, these restrictions are defined with
respect to the refractive index in the lower dielectric medium,

√
ε2, the

smallest radius of curvature, amin, and the free space wavenumber, k0.
Assuming the surrounding medium is free space, the application of the
IBC requires a large dielectric contrast

|√ε2| � 1 (17)

and a second restricts the surface’s curvature

|Im {√ε2}| k0 amin � 1 (18)

where Im {∗} indicates the imaginary part [15]. Substituting equation
(16) into equation (4), the following single integral equation is
constructed for the dielectric surface excited by a perpendicularly
polarized incident field.

∂nE = 2∂nEinc − 2
j

k1

√
ε1
ε2
QND∂nE − 2QNN∂nE (19)

The use of the IBC has apparently approximated one of the operators
found in the exact equation (13) as follows

4QND
(
1 + 2Q̂DD

)−1
Q̂DN ≈ −2

j

k1

√
ε1
ε2
QND (20)

The operator Q̂DN has been replaced by term which is an inverse power
of the wavenumber, k2; the implications of this approximation will be
examined in the next few paragraphs concerning the flat surface result.
Additionally, the operator involving the inverse of Q̂DD has been
been completely neglected. Hence, a potentially important multiple
scattering term has been discarded. This may be interpreted as a limit
on the maximum radius of curvature of the surface and ultimately
implies that the IBC can only be exact for a flat surface. The effects of
this approximation can be clearly seen by examining scattering from
a surface with a small radius of curvature, such as a wedge. These
results will be presented in a second paper which focuses directly on
the impedance boundary condition.

For illustrative purposes, however, consider the flat surface
solution. The flat surface eliminates the impact of one of the
approximations of the IBC, (Q̂DD ≈ 0), since the operators, QNN
and QDD are zero for a flat surface. Hence, the IBC integral equation
(19) reduces to

∂nE = 2∂nEinc − 2QND
j

k1

√
ε1
ε2
∂nE (21)
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When one assumes an incident plane wave, the solution for a single
mode can be constructed. Consequently, one may substitute the
appropriate eigenvalue for the remaining operator in equation (21).
This yields an equation independent of operators since only a single
mode is considered.

∂nE = 2∂nEinc +
√
ε1
ε2

cos θi∂nE (22)

Solving for the total field in the upper medium due to the incident
plane wave, the integral equation with the IBC approximation yields
the solution

∂nE =

(
2
√
ε2√

ε1 cos θi +
√
ε2

)
∂nE

inc (23)

Since the normal derivative of the electric field intensity, ∂nE, is
proportional to the surface component of the magnetic field intensity,
H, equation (23) may be manipulated to yield a relationship between
the incident and the reflected field. Here, the proportionality coefficient
is the IBC reflection coefficient for perpendicular polarization

ΓIBC⊥ =
√
ε1 cos θi −

√
ε2√

ε1 cos θi +
√
ε2

(24)

Obviously, if the IBC is exact for the flat surface, this result should
match the Fresnel reflection coefficient, found in standard texts [16]. It
is note-worthy that if one starts with the exact integral equation (13),
assumes a flat surface and examines only one mode, the exact Fresnel
coefficients are reproduced as the constant of proportionality between
the incident and the reflected field. For a perpendicularly polarized
plane wave incident on a flat surface, this reflection coefficient is

Γ⊥ =
√
ε1 cos θi −

√
ε2 cos θt√

ε1 cos θi +
√
ε2 cos θt

(25)

Using the Fresnel coefficient, the total field in the upper medium due
to an incident plane wave is

∂nE =

(
2
√
ε2 cos θt√

ε1 cos θi +
√
ε2 cos θt

)
∂nE

inc (26)

A comparison of these expressions for the reflection of a plane wave
can be made through equations (24) and (25) or equations (23) and
(26). A comparison of the reflection coefficients is given in Figure 3 for
a free space upper medium and a dielectric, ε = 2 − j1, in the lower
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Figure 3. Reflection Coefficients for perpendicular polarization:
Fresnel and IBC.

medium. Higher loss and higher contrast result in better agreement
between the IBC and the exact result. Examining this figure and the
equations, a second limitation of the IBC is now apparent. The IBC
will apparently perform well for a transmission angle, θt, near 0◦ and
an incident angle, θi near 90◦; or a dielectric contrast which is large,
(ε2 � ε1). Again, these conclusions agree with those given above by
Wang [15].

3.3. Parallel Polarization (Ψ→ H)

Following a method similar to the previous development, the
perturbative integral equation is found by first selecting and solving
equation (6) for the field ∂nH in the lower medium.

∂nH = −2
(
I − 2Q̂NN

)−1
Q̂NDH (27)

Again, the inverse operator in this equation may be efficiently
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Figure 4. The real part of the re flection coefficient. Higher contrast
(or Loss): e(Γ⊥)→ −1.

implemented using various techniques such as the MOMI solution.
The boundary condition for the normal derivative of the field is then
employed. In this case, the boundary condition will impact the final
result since a change in permittivity is assumed. This boundary
condition relates the normal derivative of the fields.

1
jωε1

∂H1

∂n
=

1
jωε2

∂H2

∂n
(28)

Enforcing this boundary condition, and substituting result into
equation (3), the perturbation solution for parallel polarized field
incident on a two-dimensional, randomly rough dielectric surface is
given.

H = 2H inc + 2QDDH + 4
ε1
ε2
QDN

(
I − 2Q̂NN

)−1
Q̂NDH (29)

Again, three terms are present; the first two represent scattering by
a perfect electric conductor and the last represents the effect of the
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dielectric. This equation can be rearranged into a form dual to the
perpendicular result;

(I − 2QDD)H = 2H inc + 4
ε1
ε2
QDN

(
I − 2Q̂NN

)−1
Q̂NDH (30)

As in the perpendicular polarization case, this form is amenable to
solution by the MOMI technique.

H = 2(I − U)−1(I − L)−1∂nH
inc + (I − U)−1(I − L)−1LUH

+4(I − U)−1(I − L)−1 ε1
ε2
QND

(
1 + 2Q̂NN

)−1
Q̂NDH (31)

The solution of equation (31) is found using Neumann iteration;
the convergence of this iterative approach is illustrated in Figures 5
and 6 for the same sinusoidal surface parameters as used with
the perpendicular polarization example of the previous subsection.
Obviously, convergence for this polarization presents a problem, since
convergence of the Neumann series is only reached for large loss or large
dielectric contrast. Low loss and low contrast solutions can actually
diverge. This problem is unique to the parallel polarization and is
related to the phenomena of the Brewster angle and the behavior of
the dielectric integral equations in general. These observations are
discussed in Section 3.5.

3.4. Comparison of Parallel Polarization with the IBC

As with the perpendicular case, the Leontovich Impedance Boundary
Condition (LIBC) can also be implemented for this problem. Starting
with the integral equation (3) describing the field in medium one, and
substituting for ψ with the magnetic field intensity, H, one finds

H = 2H inc + 2QDDH −QDNH (32)

Substituting the LIBC [14]

∂H

∂n
= jk1

√
ε1
ε2
H (33)

into (32) yields the following approximate integral equation

H = 2H inc + 2QDDH − 2
(
jk1

√
ε1
ε2

)
QDNH (34)

The use of the impedance boundary condition has forced the following
approximation to the exact operators,

4
ε1
ε2
QDN

(
I − 2Q̂NN

)−1
Q̂ND ≈ 2

(
jk1

√
ε1
ε2

)
QDN (35)
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Figure 5. Parallel Polarization: Normalized residual error for varying
contrast. Convergence of the perturbative dielectric integral equation
for a Gaussian beam incident on a cosine surface.
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Figure 6. Parallel Polarization: Normalized residual error for varying
loss in the lower medium. Convergence of the perturbative dielectric
integral equation for a Gaussian beam incident on a cosine surface.
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Consequently, one can see that the IBC approximation neglects the
multiple scattering term, Q̂NN . In addition, this approximation
replaces the angle independent form of the integral operator’s
eigenvalue, Q̂ND → −jk2/2 with an approximation, Q̂ND →
−jk2 cos θt/2. Hence, this approximation implies a flat surface and
an incident plane wave; in other words, the curvature of the surface
with respect to the incident field must be large. These results are
similar to those found for perpendicular polarization.

As with the previous development, a solution is constructed for
an incident plane wave and a flat surface. Since the system is excited
by an eigenfunction of the operator, the eigenvalue of the operator is
substituted for the operator itself, as follows

H = 2H inc −
(

1
cos θi

) √
ε1√
ε2
H (36)

Solving for the total field in the upper medium, the modal solution
is formed for an incident plane wave, a flat surface and the
implementation of the IBC,

H =

(
2
√
ε2 cos θi√

ε1 +
√
ε2 cos θt

)
H inc (37)

This result, in turn, implies a reflection coefficient of the following form

ΓIBC‖ =
√
ε1 −

√
ε2 cos θi√

ε1 +
√
ε2 cos θi

(38)

Using exact plane wave theory, the result for the total field is given by

H =

(
2
√
ε2 cos θi√

ε1 cos θt +
√
ε2 cos θi

)
H inc (39)

and the Fresnel (exact) reflection coefficient is given by,

Γ‖ =
√
ε1 cos θt −

√
ε2 cos θi√

ε1 cos θt +
√
ε2 cos θi

(40)

Again one expects for a flat surface, that the IBC will work well as
long as the transmission angle, θt is near 0◦, or the incident angle, θi
is near 90◦ or the dielectric contrast is large. Referring to Figure 7,
the differences between the reflection coefficient for the IBC and exact
theory are displayed for ε2 = 2 − j1. One notable departure of the
exact and the IBC result appears near the Brewster angle.
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Figure 7. Real part of the reflection coefficients. Higher contrast (or
loss): e(Γ‖)→ −1 near normal incidence; e(Γ‖)→ +1 near grazing
incidence.

3.5. Convergence Properties of the Dielectric Integral
Equations

The eigenvalue spectrum of the integral operators for both the
perpendicular and the parallel polarizations is constructed in Figure 8;
these figures have been created under the assumption of an infinite half-
space of lossless media. Similarly, Figure 9 displays the eigenvalues
of these operators, but with a small loss introduced into the lower
medium. In Figure 9, the primary effect of the additional loss was
bounding the singularity at the Brewster angle. Although these spectra
are not exact for the truncated surfaces used in the simulations found
in this work, they provide some insight into the convergence of the
solutions. One first considers perpendicular polarization and recalls
that the convergence in this case is well-behaved. The eigenvalues for
the perpendicular case, bottom of Figures 8 and 9, remain bounded at
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Figure 8. The Eigenvalues of the flat surface operator: Lossless Case;
Parallel: (I − 4 ε1ε2QDN Q̂ND) Perpendicular: (I − 4QNDQ̂DN ).

all incident angles. They even approach the ideal value of one for a
large dielectric contrast (or larger loss) for all incidence angles. Note
that an eigenvalue near one occurs for the perpendicular case since at
grazing incidence, the electric field is consistently parallel to the surface
and the PEC boundary condition can be enforced as the loss or contrast
approaches infinity (Etotaltan = 0). Consequently, one would expect rapid
convergence for a perpendicularly polarized incident beam field, since
the form of new dielectric integral equation is a perturbation of the
PEC equation. In addition, this case should converge more rapidly
with larger loss and/or larger dielectric contrast.

On the other hand, examining the parallel polarization case
(Figure 8, top), one observes that if the incident angle is near the
Brewster angle, the eigenvalue of the parallel operator increases toward
infinity. As the contrast approaches infinity, the eigenvalue infinity is
pushed out toward grazing incidence. The influence of the Brewster
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Figure 9. The Eigenvalues of the flat surface operator: Lossy Case;
Parallel: (I − 4 ε1ε2QDN Q̂ND) Perpendicular: (I − 4QNDQ̂DN ).

angle effect appears to be greatest with lower contrast interfaces. In
the next figure (Figure 9, top), the influence of the loss has suppressed
the infinity at the Brewster angle and replaced it with a rounded peak.
The introduction of this loss is most noticeable with lower contrasts.
On the other hand, one expects that the convergence for an incident,
parallel polarized beam may initially converge; however, depending
on the error criteria, the parallel case may eventually diverge. Low
contrasts or low loss may not converge at all.

Additional insight into the characteristics of the implementation
of the integral equations can be found by examining the reflection co-
efficients. Beginning with perpendicular polarization, an examination
of Figure 4 reveals that as the contrast or the loss is increased, the
real part of the reflection coefficient approaches negative one, regard-
less of incidence angle (Γ⊥ → −1). Hence, these integral equations
enforce the PEC boundary condition for all real incident angles: the
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Figure 10. Reflection coefficients for parallel polarization: Fresnel
and IBC.

total tangential electric field is zero, a shown below in equation (41).

Etotal = Einc + Erefl = (1 + Γ⊥)Einc = 0 (41)

The implications of this observation are more apparent when
contrasted with the behavior of parallel polarization.

For parallel polarization, the reflection coefficient is given in
Figure 7 and several effects are evident. Near normal incidence,
as the loss becomes large, the surface behaves as a PEC surface:
the reflected field cancels the incident field which enforces the zero-
tangential electric field boundary condition, see equation (42).

Etotal = Einc + Erefl = (1 + Γ‖)E
inc = 0 (42)

However, near grazing incidence, the real part of the reflection
coefficient approaches positive one and the electric field is reinforced.
The total magnetic field, however, becomes zero; the surface behaves
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as if it were a perfect magnetic conductor (PMC) at low grazing angles.

Htotal = H inc +Hrefl = (1− Γ‖)H
inc = 0 (43)

Figure 10 also shows the reflection coefficient for dielectric coefficients
with varying values. Examining this figure, one can see several features.
First, the real part of the reflection coefficient is zero at the Brewster
angle and has changed sign as the incident angle approaches grazing.
Second, unlike the perpendicular case, the real part of the reflection
coefficient varies from (Γ‖ = −1 to Γ‖ = +1). Hence, as the contrast or
loss is increased, these curves move closer to a reflection coefficient of
negative one only near normal incidence. This observation adheres
to the form of a second kind integral equation for fields incident
near normal. However, since the reflection coefficient for the H-field
changes sign after the Brewster angle, the reflected magnetic field
intensity will switch from re-enforcing the incident field to cancelling
it. The scattering characteristic of the parallel polarization changes
from a PEC approximation at normal incidence to a perfect magnetic
conductor (PMC) at grazing incidence (total magnetic field becomes
zero at the surface). This effect is not encountered with PEC surface
simulation since the Brewster angle has been pushed out to 90◦.

This instability can be recognized directly from the integral
equation itself. Near grazing incidence, the incident field remains
O(1) while the field quantity, H approaches O(δ) or less as the angle
approaches grazing; hence, equation (29) for a flat surface becomes

H = 2H inc + 4
ε1
ε2
QDN Q̂NDH (44)

where H is O(δ) and H inc is O(1). Therefore, in order to maintain
equality, the eigenvalue of the operator must proportionately increase
near grazing in order to compensate for the decreasing field magnitude.
It can be shown that the eigenvalue of the operator for parallel
polarization is in fact proportional to (cos θinc)−1, when θinc →
90◦. Specifically, observe that near grazing, the total magnetic field
approaches zero; consequently, the integral equation (29), appears to
enforce the perfect magnetic conductor’s boundary condition (Htotal

tan =
0).

0 = 2H inc + 4
ε1
ε2
QDN Q̂NDH (45)

In addition, the unknown only appears under the integral which
is reminiscent of the form of a first kind integral equation. The
convergence problems inherent in first-kind integral equations have
been discussed in [12]. As previously mentioned, the zeroth order
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solution has changed from scattering by a PEC surface to scattering
by a PMC surface. As a result, the series based on a perturbation of
the PEC result is no longer accurate.

4. CONCLUSIONS AND FUTURE EFFORTS

A new, exact approach to the dielectric integral equations in two
dimensions has been derived and implemented. This approach provides
an alternative to the IBC that does not require the simplifying
assumptions of the IBC, yet it is more computationally efficient
than standard methods for a class of dielectric surfaces. In the
approach proposed here, the solution has been cast as a perturbation
to scattering from a PEC surface; the perturbative terms introduce the
effects of the finite conductivity of the surface. In addition, through
the formulation of the single integral equation, the limitations of the
IBC implementation have been verified as operator approximations to
the exact integral operators. This investigation into the limitations
of the IBC is the subject of an upcoming work. The practical
implementation of the new, perturbative dielectric equations also has
limitations. For high loss, for example, this formulation behaves very
well. It approached the PEC result for higher loss or higher contrast.
High loss and high contrast were expected to result in more rapid
convergence since the perturbative term diminishes in significance.
However, particularly with parallel polarization, the convergence of
the Neumann series can be very slow and in some cases, it may
diverge. In such cases the proposed equations may still provide a useful
preconditioner for a Krylov iterative solver.

The reason for the divergence of the equations has been linked to
the Brewster angle effect through an examination of the eigenvalues
of the integral operators. Since the operator’s eigenvalue blows
up in certain spectral regions and remains bounded in others, a
spectrally rich incident field will excite these modes. Convergence
rate, accordingly, decreases. Since a greater dielectric contrast
pushes this critical eigenvalue out toward grazing and decreases the
affected spectral region, increasing the dielectric contrast facilitates
convergence. Likewise, the addition of loss decreases the peak
magnitude of the eigenvalue, thereby decreasing the condition
number and increasing convergence rate. An improved method for
accommodating the Brewster angle phenomena has been previously
introduced and will be addressed in two upcoming papers by the
authors in which this effect is specifically treated [13].

Existing dielectric formulations and the new formulation presented
herein have undesirable characteristics which lead to numerical insta-
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bilities; they are ill-conditioned with respect to mesh discretization.
The impedance boundary condition has been introduced into the in-
tegral equation for scattering from a dielectric surface and was im-
plemented in this work using the hypersingular operator, QND for
perpendicular polarization. Without preconditioning, the use of this
operator is known to lead to mesh instabilities [12]. Consequently,
as the contrast ratio is increased and finer meshes are required, the
iterative solution will converge slowly or not at all regardless of the
technique used (MOMI, Conjugate Gradient, etc.)

As an alternative to the use of the hypersingular implementation,
the electric field boundary condition may be used to construct the
integral equation [17]. In the PEC limit (εi → j∞), however, this
formulation reduces to the ill-posed electric field integral equation
(EFIE). Numerically this leads to a poorly conditioned matrix for fine
discretization. In addition, this formulation is not as useful in the high
contrast, no loss limit (εr →∞). Finally, in an extension of the EFIE
approach to three-dimensions, the hypersingular operator cannot be
avoided since the EFIE-type kernel is always hypersingular in 3-D.
As a consequence, the resulting integral equation is ill-posed, even for
high-loss surfaces. This means that, as the discretization interval tends
to zero, the number of iterations required to solve it tends to infinity,
not to mention that a MOMI-type factorization becomes infeasible.

The poor conditioning of these equations has driven the need
for a formulation which asymptotically leads to the correct results.
In the PEC implementation of the magnetic Field Integral Equation
(MFIE), for example, this asymptotic limit yields the Kirchhoff term.
Consequently, a new dielectric formulation which mimics this result of
the MFIE is desirable and this approach is the subject of recent works
by the authors; an introduction to this work has appeared [13].
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