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Abstract—Radar scattering amplitudes contain pole singularities
whose importance was recognized in the context of the Singularity
Expansion Method: S.E.M. This method uses the fact that the late
time domain response rt(t) of a target, illuminated by an E.M. wave,
is mainly defined in a frequency band corresponding to the resonance
region of the object. The knowledge of the singularities is useful
information for discrimination of radar targets and has been used
for different purposes of discrimination and identification. In this
paper, we propose a modified scheme of radar target identification.
The method presented is based on E-Pulse technique. In practical
cases, direct application of classical E-Pulse techniques is not very
efficient. Its performances are damaged by the characteristics of the
exciting signal (antenna output signal). We propose a modified scheme
of E-Pulse technique, which allows more accurate target discrimination
and improves radar target identification. This procedure requires the
deconvolution of the target response by the antenna signal and the
application of an equivalent gaussian impulse excitation. This process
has been successfully tested to FDTD simulations and measurements
in anechoic chamber.
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1. INTRODUCTION

Analysis and identification of objects according to their electromag-
netic response remain prone to many researches in radar domain,
in particular with regard to detection of buried objects or targets
known as stealthies. Development of composite materials, absorbing
the electromagnetic waves in the classical radar frequency bands, has
returned the problems of detection and identification increasingly com-
plex. These evolutions have directed the axis of research with regard
to targets detection, towards a low frequency analysis of the scattered
signals. For these frequency bands, the dimension of the object is in
the same order than the wavelength associated to the excitation sig-
nal. The object is then observed in its resonance zone for which the
fluctuation of the energy radiated is significant.

The formalism is based on a representation of the response due to
an electromagnetic excitation, whose Baum [1, 2] presented a modeling
(in time and frequency domain). This response (1) is composed by an
impulsive part or early time, known as forced, followed by a late time
r(t), for which the target oscillates freely.

rt(t) = fe(t) + r(t) (1)
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The late time response is expressed by a finite sum of damped sinusoids:

r(t) =
N∑
n=1

an(θ)eσnt cos [ωnt + φn(θ)] (2)

for t > T1 (the beginning of the late time), (σn, ωn) is the pole of the
nth resonance mode of the target described by a damping coefficient
and a resonance pulsation, (an and φn) are the amplitude and the
phase of the nth resonance mode, θ represents the target orientation
with the radar observation system and N is the number of modes of
the development.

Thus, the resonant behavior of the late time, characteristic of the
studied target, can be used in order to define a method of identification.
This article presents an effective scheme of radar targets identification,
based on E-Pulse technique.

2. CHARACTERIZATION OF EXTRACTIVE SIGNALS
OR E-PULSE SIGNALS

The first stage of this study consists in creating a library of resonance
poles for a whole targets. Complex Natural Resonance (CNR) can then
be characterized as well in time as in frequency domain [3]. In the time
domain, CNR’s are calculated by Prony’s methods [5], by determining
the whole couples (σn, ωn) corresponding to the late time response r(t)
(2).

In the frequency domain, CNR’s correspond to the physical poles
associated with the scattered function F (ω) of the target, defined from
its equivalent transfer function H(ω):

H(ω) =
�Ed∣∣∣ �Ei∣∣∣ =

e−ik0r

k0r
F (ω) (3)

Calculation of the scattered electric field �Ed uses the resolution of
Maxwell integral equations, for example using the method of moments
(MoM). Once the whole CNR’s of the target are calculated, they can
be used to synthesize an extractive or E-Pulse signals, whose formalism
is presented in the following paragraph.

2.1. Synthesis of E-Pulse Signals

One tries to construct an extractive signal e(t), characterized by its
duration Te, for which the convolution with the signal r(t) produces a
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null function [4]. This convolution can be written as follows:

c(t) = e(t)∗r(t) =
∫ Te

0
e(t′)r(t− t′)dt′ (4)

for t > T1 + Te
After simplification, this relation is written in the form:

c(t) =
N∑
n=1

an(θ)eσnt{A + B}, (5)

With: {
A = An cos [ωnt + φn(θ)]
B = Bn sin [ωnt + φn(θ)]

(5a)

and
An = Re {E(sn)} Bn = −Im {E(sn)} (5b)

E(sn) = TL [e(t)] =
∫ Te

0
e(t)e−sntdt (5c)

Coefficients An and Bn are independent of the direction of observation
and determine the amplitudes of the convolution product c(t). It is
thus possible to synthesize a discriminating signals e(t) in order to
give c(t) into the desired form (null function) [4, 6, 7].

2.2. A Construction of the Discriminating Signal

In order to interpret physically the nature of the discriminating signals
(particularly those of the E-Pulse type), it is possible to represent the
exciting wave by a sum of two components, one known as “forcing”
ef (t) which excites the target and the other ee(t) known as extinctive
which inhibits the response due to ef (t) [4]:

e(t) = ef (t) + ee(t), with :

{
ef (t) 0 ≤ t ≤ Tf

ee(t) Tf ≤ t ≤ Te
(6)

The choice of ef (t), can be more or less arbitrary but conditions the
form of ee(t) which can be expressed using the basis functions fm(t):

ee(t) =
M∑
m=1

αmfm(t), with : M = 2N (7)

where αm are the weighting coefficients associated to the basis
functions fm(t).

The weighting coefficients are calculated by solving an equation
system deduced from (6) and (7).
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2.3. Synthesis of an E-Pulse Signal Harmonic Domain

The constraint which yields the null result to convolution (4), imposes
(5c):

E(sn) = E(s∗n) ≡ 0 for 1 ≤ n ≤ N (8)
Condition (8) leads to:

Ee(sn) = −Ef (sn) (9)

and
2N∑
m=1

αmFm(sn) = −Ef (sn) (10)

which can be put into a matrix form:




F1(s1) F2(s1) · · · F2N (s1)
· · · · · · · ·

F1(sN ) F1(sN ) · · · F2N (s1)
F1(s∗1) F2(s∗1) · · · F2N (s∗1)
· · . . . · · ·

F1(s∗N ) F2(s∗N ) · · · F2N (s∗1)







α1

·
·
·
·
·
·

α2N




=




−Ef (s1)
·
·

−Ef (sN )
−Ef (s∗1)
·
·

−Ef (s∗N )




with : Fm(s) = TL {fm(t)} and Ef (s) = TL {ef (t)}
(11)

One chooses to fix the “forcing” component to be zero. The matrix
equation becomes homogeneous and a non-trivial solution exists only
if the matrix determinant is null. The difficulties associated with roots
extraction of (8) can be overcome by a judicious choice of basis sub-
functions:

fm(t) =

{
g[t− (m− 1)∆] if (m− 1)∆ ≤ t ≤ m∆
0 elseif

(12)

The choice of g(t) is not very significant, provided that the function
has a Laplace transformation. In this case:

Fm(s) = e−(m−1)s∆G(s) (13)
G(s) = TL {g(t)}

Noticing that: Fm(s) = F1(s)e−(m−1)s∆ the E-Pulse spectrum is then
equal to:

E(s) = F1(s)
2N∑
m=1

αmzm−1, Z = e−s∆ (14)
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The roots of E(s) result from the polynomial equation:

2N∑
m=1

αmzm−1 ≡ 0 (15)

which can be also written in a matrix form:




1 z1 z2
1 ·· z2N−1

1
· · · ·· ·
1 zN z2

N ·· z2N−1
N

1 z∗1 z∗1 ·· z∗2N−1
1

· · · ·· ·
1 z∗N z∗2N ·· z∗2N−1

N







α1

·
·
·
·
·
·

α2N




=




0
·
·
0
0
·
·
0




(16)

This equation with a second null member has a non-trivial solution
(different to 0) only when the matrix determinant is equal to zero.
The matrix being of the Vandermonde type, its determinant is equal
to:

Det =
∏

i=1..2N

j=1..N−1

i>j

(zi − zj) (17)

The only null possible terms are:

zi − z∗i = 0 ⇔ zi = z∗i ⇔ 2 sin(ωi∆) = 0 so ∆ =
pπ

ωi
p = 1, 2, 3, . . . et 1 ≤ i ≤ N (18)

Thus, the E-Pulse signal duration depends only on the imaginary part
of one of the natural frequencies. The minimal Te value is calculated
by choosing the greatest value of ωi.

(Te)min =
2Nπ

sup[ωi] i=1...N

(19)

Once ∆ determined, the amplitudes of the basic functions are
calculated using the theory of determinants. The system solution gives:

αm = (−1)mP(2N−1)−(m−1) (20)

where P(2N−1)−(m−1) is a product sum with degree equals (2N − 1)−
(m− 1).

This procedure will be thus used to characterize an identification
method of radar targets.
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3. VALIDATION OF E-PULSE METHOD: FDTD
SIMULATIONS

We propose to apply the E-Pulse method to perfectly conducting
targets which have been subject of electromagnetic modeling and
measurements in an anechoic chamber. The targets under test are:

• a dipole with length L = 0.15 m and radius a : L/a = 300
• a conducting sphere with radius r = 0.177 m
• a metallic plate with side a = 1 m

The first results are presented in the case of signals calculated by FDTD
simulations. In that case, the transfer function of the transmitting and
receiving antennas corresponds to those measured on a time domain
UWB instrumentation.

For each target, Figures 1a, 2a and 3a represent the E-Pulse
functions deduced from the theoretical CNR’s calculated by SEM. The
target responses r(t) and the convolution products c(t) are superposed
on Figures 1b, 2b and 3b.

3.1. Case of a Conducting Dipole

For the conducting dipole, N = 6 CNR’s are used to construct the
E-Pulse function, which is plotted on Figure 1a.

Figure 1b shows that the convolution product tends toward zero
for t > TL = T1 + Te. The E-Pulse function thus synthesized seems to
confirm theoretical results of paragraph 2 (cancellation of c(t) for an
extractive E-Pulse signal). In order to validate more accurately the
method, this analysis is extended to other targets defined previously.

3.2. Case of a Conducting Sphere and a Metallic Plate

In case of the conducting sphere and the metallic plate, N = 5
and N = 6 CNR’s are respectively used to construct the E-Pulse
functions. If the convolution analysis between the target response
and its associated E-Pulse function seems to give good results in
the case of the conducting dipole (cancellation of convolution for
t > TL = T1 + Te), this result is not verified for the other targets
(conducting sphere and metallic plate). Therefore, no identification or
discrimination seems to be possible from these observations.

This result can be mainly explained by the characteristics of the
excitation signal (signal measured at the antenna output). Indeed the
formalism used by Baum to model the late time response of the target
requires an impulse excitation of Dirac type. In our case, the response
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Figure 1a. A E-Pulse associated with a conducting dipole.

Figure 1b. Time response of the conducting dipole and convolution
product with the E-Pulse function.
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Figure 2a. A E-Pulse associated with a conducting sphere.

Figure 2b. Response of a conducting sphere and application of E-
Pulse method.



48 Toribio, Saillard, and Pouliguen

Figure 3a. A E-Pulse associated with a metallic plate.

Figure 3b. Response of a metallic plate and and application of E-
Pulse method.
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Figure 4. Experimental exciting signal measured in antenna output.
So the signal available at the antenna output has a shape nearer of a
derived Gaussian than a Dirac pulse.

of a target given by (2) is the result of a convolution product between
the impulse response of the target and an exciting signal of Figure 4:


r(t) = sexc(t)∗hcible(t)
sexc(t) : exciting signal
hcible(t) : impulse response of the target

(21)

However the signal available at the antenna output rather has shape
of a derived gaussian signal.

3.3. Improvement of the E-Pulse Method: Gaussian
Excitation

In order to improve the E-Pulse technique, we propose to apply
a gaussian signal as excitation. This procedure will first require
deconvolution of the target response by the antenna signal. Then,
we apply the convolution of the resulting signal by a gaussian impulse.
This process can be summed up by the synoptic of Figure 5.

In this configuration the exciting signal is represented on
Figure 6a.

The application of this technique to the targets under test clearly
improves the previous results. (Figures 6b and 6c) and allows to
define a discrimination factor which criteria is specified in the following
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Improvement of  the discrimination methodImprovement of  the discrimination method

GaussianGaussian  Excitation Excitation

AntennaAntenna signalsignal Deconvolution Deconvolution

Gaussian excitation**E-Pulse function

resultresult

TargetTarget

EmissionEmission

Measured signalMeasured signal

NullNull FunctionFunction for t > T for t > TLL

Figure 5. Synoptic of a modified scheme of radar target identification.

Figure 6a. Representation of the exciting gaussian signal.
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case of a conducting sphere:

Figure 6b. Conducting sphere response associated with a gaussian
impulse and application of E-Pulse method.

case of a metallic plate:

Figure 6c. Metallic plate response associated with a gaussian impulse
and application of E-Pulse method.
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Figure 7. Convolution of a conducting dipole response and E-Pulse
associated with a conducting sphere.

paragraph. This time, c(t) tends more quickly toward the null function,
than the previous cases.

4. DEFINITION OF A DISCRIMINATION FACTOR
(EXTRACTION DISCRIMINATION NUMBER)

The results presented in the preceding paragraph are examples when
the E-Pulse functions considered are synthesized from CNR’s of the
studied target. In order to check that this function is characteristic of
the object, one considers the case of Figure 7 when the dipole response
is convoluted to the E-Pulse function constructed with the CNR of the
conducting sphere of radius a = 0.177 m.

Then, one can observe that there is no cancellation of the
convolution product for t > TL = T1 + Te. Thus, it is possible to
define a discrimination number EDN [8–12] (E-Pulse Discrimination
Number) which measures the relative power (compared to power of the
E-Pulse function) corresponding to the end of the convolution product.
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This number is defined by following expression:

EDN =

∫ TL+W

TL

|c(t)|2 dt
∫ Te

0
|E-pulse(t)|2 dt

(22)

where W represents the width of the time window, which corresponds
to 95% of the power of the convolution product from t > TL.

Theoretically, the latter must be null for t > TL = T1 + Te. In
practice, one calculates EDN factor for an unspecified target and its
corresponding E-Pulse function. This value is taken as reference. It
corresponds to the least EDN factor and will be used for definition of
the normalized factor (EDR), compared to the minimal value of EDN
coefficient:

EDR = 10 log10

{
EDN

min(EDN)

}
(23)

As examples, one applies this method to series of conducting sphere
whose radius vary from 0.15 m to 0.25 m (Figure 8). The sphere
considered as reference has a radius equal to r = 0.2 m. Application
of E-Pulse technique allows to calculate several EDN factors from
which the smallest indeed corresponds to conducting sphere with radius
r = 0.2 m.

5. VALIDATION OF THE E-PULSE METHOD:
MEASUREMENT RESULTS

This paragraph presents an application of the modified scheme of E-
Pulse technique, to measurements. The results concern three measured
conducting targets.

The measurements are made directly in time domain using an
UWB laboratory measurement system developed by CELAR (French
defense organization) in an anechoic chamber.
• a sphere with radius r = 0.1 m
• a square plate with side a = 0.6 m
• a cylinder with dimensions L = 0.618 m r = 0.125 m

The EDN’s are calculated for each reference targets and are compared
to those obtained with others targets. All E-Pulses used for the EDN’s
calculation are determined thanks to theoretical CNR’s.

For the conducting sphere, the target response with a real and
a gaussian excitations are presented graphically (Figures 9a and 9b).
Also the convolution product c(t) between the E-Pulse function of the
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Figure 8. Evolution of E.D.R factor from radius of a conducting
sphere.

Figure 9a. Response of a conducting sphere associated with a real
excitation.
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Figure 9b. Response of a conducting sphere associated with a
gaussian excitation.

Figure 9c. Convolution of E-Pulse signal and response of conducting
sphere considered as reference.
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reference sphere (r = 0.1 m) and another with radius r = 0.2 m is
represented. The whole coefficients EDN are consigned in Tables 1 to
3.

Case of a conducting sphere with radius r = 0.1 m

The reference target is the conducting sphere of radius a = 0.1 m.
The EDN coefficient calculated equals to: EDN = −17.04 (dB).

Table 1. EDN coefficients of testing targets with the conducting
sphere a = 0.1 m as reference signal.

Testing targets E.D.N in dB

sphere with radius a = 0.1 m −17.04
sphere with radius a = 0.17 m −14.83
sphere with radius a = 0.2 m −13.22
sphere with radius a = 0.4 m −13.08
disc with radius a = 0.2 m −12.05

Case of a conducting cylinder

The reference target is the conducting cylinder with dimensions:
L = 0.618 m, r = 0.125 m. The EDN coefficient calculated equals to:
EDN = −34.41 (dB).

Table 2. EDN coefficients of testing targets with the conducting
cylinder as reference signal.

Testing targets E.D.N in dB
Conducting cylinder −34.41

sphere with radius r = 0.17 m −24.50
sphere with radius r = 0.2 m −21.91
sphere with radius r = 0.4 m −22.16
sphere with radius r = 0.1 m −10.19
disc with radius r = 0.2 m m −17.38
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Case of a metallic plate

The reference target is the metallic plate conducting with side a =
0.6 m. The EDN coefficient calculated equals to: EDN=−25.55 (dB).

Table 3. EDN coefficients of testing targets with the metallic plate
as reference signal.

Testing targets E.D.N in dB

metallic plate with side a = 0.6 m −25.55
sphere with radius r = 0.17 m −21.11
sphere with radius r = 0.2 m −20.49
sphere with radius r = 0.4 m −15.58
sphere with radius r = 0.1 m −9.41
disc with radius r = 0.2 m m −11.06

Analysis of the results shows that for each target studied, the EDN
coefficient calculated is minimum for E-Pulse function corresponding
to the measured target. The simulation and the efficiency of our
modified E-Pulse method results are checked. These results can be
improved by decreasing the duration of the exciting Gaussian impulse,
in order to approach the theoretical impulse response of the target.

6. CONCLUSION

The results obtained from this study have shown potential use of
resonance poles libraries of radar targets. This information can thus be
integrated in discrimination and identification devices. The exposed
method consists, from the CNR of an object, in the synthesis of
extractive signals (characteristic of the studied object), which, after
convolution with the late time response, provide a null function. In
practical cases, direct application of E-Pulse techniques is not very
efficient. Their performances are damaged by the characteristics of the
exciting signal (antenna signal). We have proposed a modified scheme
of E-Pulse technique in order to improve radar target identification.
It consists firstly in the deconvolution of the target response by the
antenna signal, and then, the convolution of the resulting signal by a
gaussian impulse. This process has been successfully tested to FDTD
simulations and measures in anechoic room and can be applied to an
operational device of identification.
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