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Abstract—Recently non-relativistic boundary conditions, based on
the Lorentz force formulas, have been investigated. It was shown that
to the first order in the relative velocity v/c the results for scattering
problems are in agreement with the exact relativistic formalism.
Examples for scattering by material objects moving in free space have
been discussed.

Presently the feasibility of non-relativistically solving scattering
problems involving arbitrary material media is investigated. For
concreteness, two representative canonical problems were chosen:
scattering by a uniformly moving circular cylinder, and the related
problem of a cylinder at rest, comprised of a uniformly moving medium
in the cylindrical cross-sectional plane.

The investigation demonstrates that solving such problems is
feasible, and indicates the complexity involved in such an analysis.
The main highlights are that we need to evaluate the phases and
amplitudes of waves at the scatterer’s surface, employing formulas
based on the Lorentz force formulas and the Fresnel drag concept. The
explicit solutions for the scattering problem display velocity-dependent
interaction of the scattering coefficients.
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1. INTRODUCTION AND PROGRAMMATIC OUTLINE

Maxwell’s theory in velocity dependent systems was since long ago
recognized as a programmatic tool for a profounder understanding of
electrodynamics, see Sommerfeld’s [1, p. 280] historical account. This
attitude is emphasized by A. Einstein, entitling his monumental (1905)
article “On the Electrodynamics of moving bodies”. Sommerfeld cites
also articles by H. Hertz (1890), E. Cohn (1901, 1902), H. A. Lorentz
(1903), and H. Minkowski (1908). Minkowski, already in possession
Einstein’s (1905) theory of Special Relativity, for the first time
correctly deals with the problem of material media in motion. Since
then, for over a century, assiduous efforts have been devoted to extend
our knowledge of electrodynamics, especially as concerns scattering
and propagation in the presence of moving objects and moving media.

Strictly speaking, Einstein’s theory applies to inertial systems
only, and thus excludes spatiotemporally varying velocities. This
reduces the class of pertinent problems to a mere handful of (mostly
trivial) cases. This difficulty has been recognized from the early stages,
and in order to remedy the situation, it was heuristically assumed that
the theory applies to low acceleration as well [1].

At the present time it is therefore interesting to close the circle,
and being in possession of all the heretofore relativistic results, ask the
following question: can we re-introduce a non-relativistic analysis and
to what extent will it yield commensurate results?

Recently the question of non-relativistic approximate boundary
conditions for the electromagnetic field has been discussed [2]. The
main tenet was that we refrain from using Einsten’s Special Relativity
theory and the associated Lorentz transformations [3, 4], and admit
instead boundary conditions based on ideas inferred from the Lorentz
force formulas. Existing results based on Special Relativity have
been exploited as benchmarks for examining the new findings. It
has been shown that to the first order in the relative velocity v/c
the two approaches are in agreement. The analysis in [2] was limited
to material objects moving in free space (vacuum), therefore the
analysis was simpler: It has been assumed that the excitation and
scattered waves propagate in free space, regardless if measured relative
to the scatterer at rest or in motion. In a sense this is already an
assumption based on the Special Relativity theory and the negative
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results of the Michelson-Morely experiments. Therefore calling the
method “non-relativistic” does not imply that we go back to the
Galilean transformations. Presently the new theory is extended to
more general situations of scattering in arbitrary media. The same
tenet is pursued here. With waves defined in the medium at rest, the
time dependent signal at the origin of an arbitrary reference system
yields a correct first order in v/c expression for the time dependent
term, i.e., for the frequency. The relative phase shift to different
locations requires the introduction of what essentially constitutes the
Fresnel theory for moving media. Although presented long before the
advent of Einstein’s Special Relativity theory, this is also patently a
relativistic result, as explained below. Consequently it is impossible to
completely disassociate the discussion from Special Relativity theory.

The macroscopic Maxwells equations which are the fundamental
“law of nature” concerning us here, see [5] for notation, are represented
in the form

∂x(∗) × E(∗) = −∂t(∗)B
(∗) − j(∗)m

∂x(∗) × H(∗) = ∂t(∗)D
(∗) + j(∗)e

∂x(∗) · D(∗) = ρ
(∗)
e

∂x(∗) · B(∗) = ρ
(∗)
m

(1)

Using for a while the language of Special Relativity, (*) generically
denotes that we are measuring the electromagnetic fields in the inertial
(non-accelerated) system of reference Γ(∗), in terms of the native
coordinates X(∗) = (x(∗), ict(∗)) of this system, e.g., E(∗) = E(∗)(X(∗)).
We use the Minkowski four-vector notation for the four-dimensional
spatiotemporal domain. The operator ∂x(∗)× indicates the Curl,
similarly ∂t(∗) indicates the partial time derivative. Indices e- (electric),
or m- (magnetic) refer to electric, and (virtual) magnetic sources,
respectively.

Let us drop the frame of reference notation (*) for the time being
and consider the boundary and jump conditions in the electromagnetic
field, within some arbitrary inertial system. There is a misconception
in some textbooks who claim that the boundary and jump conditions
are derived from Maxwell’s equations. Obviously boundary conditions
are imposed on differential equations and not vice-versa. The way the
boundary and jump conditions are derived for the electromagnetic field,
is by limiting processes which ensure that the Maxwell equations (1)
stay valid as we approach, as close as we wish, the boundary surfaces.
For two spatial regions, denoted “1 ” and “2 ”, it is found that in
general, four conditions are necessary, two scalar conditions derived
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from the last two equations in (1):

n̂ · (B1 − B2) = ρmS (2)
n̂ · (D1 − D2) = ρeS (3)

and two vector conditions derived from the first two equations in (1):

n̂ × (E1 − E2) = −jmS (4)
n̂ × (H1 − H2) = jeS (5)

In (2), (3) on the boundary between the two regions, the normal
components of vectors B, D, are discontinuous, the jump indicated
by the magnetic and electric surface charge densities ρmS , ρeS , respec-
tively. The unit normal vector n̂ points into region “1 ”. Similarly (4),
(5), indicate the discontinuity of the tangential components of vectors
E, H, across the boundary, with the jump given by (the negative sign
of) the magnetic, and electric, surface current densities, −jmS , jeS ,
respectively.

In general all the four relations (2)–(5) are needed, e.g., when
dealing with electrostatics and magnetostatics, or when surface
sources ρeS , ρmS , jeS , jmS are present. However, in dynamical (time-
dependent) systems, and in the absence of sources, two equations,
e.g., (4), (5), are sufficient. This well known result follows from (1),
multiplying the first two equations by n̂· yields

n̂ · (∂x × (E1 − E2)) = −∂tn̂ · (B1 − B2) (6)
n̂ · (∂x × (H1 − H2)) = −∂tn̂ · (D1 − D2) (7)

In the absence of sources and neglecting the constant due to the time
integration, the right hand side of (6), (7) vanishes according to (2),
(3). The left hand side of (6), (7), due to the multiplication by n̂·,
involves only field components tangential to the boundary. Hence
ignoring integration constants, it agrees with (4), (5), respectively.
Consequently we encounter here a redundancy.

It is noted that the boundary conditions are associated with the
Maxwell’s equation without resorting to material properties of media,
i.e., no constitutive relations are involved.

Einstein’s Special Relativity theory postulates the covariance of
(1) for all inertial systems, meaning that for any specific inertial
system, the equations (1) possess the same functional structure,
e.g., for two inertial systems denoted Γ(1), Γ(2), (1) exists with the
appropriate indices * = 1, 2, respectively.

The spatiotemporal coordinates X(1), X(2), are related by the
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Lorentz transformation

x(2) = Ũ(2 �→1) ·
(
x(1) − v(2 �→1)t(1)

)
t(2) = γ(2 �→1)

(
t(1) − v(2 �→1) · x(1)/c2

)
γ(2 �→1) = γ(1 �→2) =

(
1 − β(2 �→1)2

)−1/2

v̂(2 �→1) = −v̂(1 �→2) = v(2 �→1)/v(2 �→1),

β(2 �→1) = v(2 �→1)/c, v(2 �→1) =
∣∣v(2 �→1)

∣∣
Ũ(2 �→1) = Ũ(1 �→2) = Ĩ + (γ(2 �→1) − 1)v̂(2 �→1)v̂(2 �→1),

(8)

where in (8) the tilde denotes dyadics, Ĩ denotes the idemfactor dyadic,
and v(2 �→1) is the velocity of motion of Γ(2) as observed from Γ(1). For
brevity (8) can be denoted by X(2) = X(2)[X(1)], and it is easily shown
that (8) when solved for the Γ(2) coordinates, yields X(1) = X(1)[X(2)],
which has the same structure as (8) with interchanged indices, and
v(2 �→1) replaced by v(1 �→2) = −v(2 �→1). Subsequently we are going to
consider non-relativistic scattering, which supposedly will be correct
to the first order in v/c. Within this approximation (8) is considered
with Ũ = Ĩ, γ = 1.

x(2) = x(1) − x(2 �→1)t(1)

t(2) = t(1) − v(2 �→1) · x(1)/c2
(9)

Obviously (9) is not the classical Galilean transformation, which
is characterized by t(2) = t(1) instead of the second line (9). By taking
differentials and dividing, equations (9) yield

u(2) = (u(1) − v(2 �→1))/(1 − v(2 �→1) · u(1)/c2)

≈ u(1) − v(2 �→1) + u(1)(v(2 �→1) · u(1))/c2, u(∗) = dx(∗)/dt(∗)
(10)

which is the first order approximation for the relativistic formula for
the addition of velocities. For u(2), u(1) � c (10) reduces to the
Galilean equation u(2) = u(1) − v(2 �→1), but this is not the case when
u(1),u(2) are of the same order of magnitude as c. The latter is the
case that will concern us subsequently in relation to electromagnetic
wave propagation. For the scalar case of collinear velocities (10) can
be written as

u(2) =
(
u(1) − v(2 �→1)

)
/

(
1 − v(2 �→1)u(1)/c2

)

≈ u(1)
(
1 − (v(2 �→1)/u(1))(1 − (u(1)/c)2)

) (11)



158 Censor

Akin to the Lorentz transformation (9) we have the spectral
(Fourier) transformation (e.g., see [5]), usually referred to as the
relativistic Doppler effect

k(2) = Ũ(2 �→1) ·
(
k(1) − v(2 �→1)ω(1)/c2

)

ω(2) = γ(2 �→1)
(
ω(1) − v(2 �→1) · k(1)

) (12)

and to the first order in v/c we have

k(2) = k(1) − v(2 �→1)ω(1)/c2

ω(2) = ω(1) − v(2 �→1) · k(1)
(13)

Again, (13) is not the classical Galilean transformation, which is
characterized by k(2) = k(1) instead of the first line (13), and cannot
be reduced to it. Similarly to (10), we derive from (13), to the first
order in v/c, the slowness function

s(2) =
(
s(1) − v(2 �→1)/c2

)
/

(
1 − v(2 �→1) · s(1)

)
, s(∗) = k(∗)/ω(∗)

(14)

For the scalar one-dimensional case the inverse of (14) yields the
transformation for the phase velocity v

(∗)
ph = 1/s(∗) = ω(∗)/k(∗)

v
(2)
ph = 1/s(2) =

(
1 − v(2 �→1)/v

(1)
ph

)
/

(
1/v(1)

ph − v(2 �→1)/c2
)

≈ v
(1)
ph

(
1 − (v(2 �→1)/v

(1)
ph )(1 −A(1))

)

≈ c/N (1) − v(2 �→1)
(
1 − 1/(N (1))2

)
,

N (1) = c/v
(1)
ph , A(1) =

(
v

(1)
ph /c

)2

(15)

The identical expressions in (11), (15) show that the phase velocity
satisfies the same addition rule as any arbitrary velocity given in (11).
On the other hand, (15) is recognized as the Fresnel formula including
the “drag coefficient” (e.g., see Van Bladel [6]). It follows that the first
order v/c approximation (15), describing the phase velocity in a moving
medium, cannot be derived from classical Galilean considerations, but
must be consistently included in our analysis.

The fields in Γ(1), Γ(2) are related by the field transformation
formulas

E(2) = Ṽ(2 �→1) ·
(
E(1) + v(2 �→1) × B(1)

)

B(2) = Ṽ(2 �→1) ·
(
B(1) − v(2 �→1) × E(1)/c2

)
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D(2) = Ṽ(2 �→1) ·
(
D(1) + v(2 �→1) × H(1)/c2

)

H(2) = Ṽ(2 �→1) ·
(
H(1) − v(2 �→1) × D(1)

)

j(2)e,m = Ũ(2 �→1) ·
(
j(1)e,m − v(2 �→1)ρ(1)

e,m

)

ρ(2)
e,m = γ(2 �→1) ·

(
ρ(1)
e,m − v(2 �→1) · j(1)e,m/c2

)

Ṽ(2 �→1) = Ṽ(1 �→2) = γ(2 �→1)Ĩ + (1 − γ(2 �→1))v̂(2 �→1)v̂(2 �→1)

(16)

Once again, to the first order in v/c, in (16) we take Ṽ = Ĩ, Ũ =
Ĩ, γ = 1. It is crucial to note that in (16) E(1) = E(1)(X(1)) and E(2) =
E(2)(X(2)), etc., depending on their native space coordinates, and the
Lorentz transformation (8) X(2) = X(2)[X(1)] mediating between the
coordinate systems. In summary — in the Special Relativity context
we deal with two distinct but related spaces. In contradistinction, for
the Lorentz force formulas given below, all events takes place in one
coordinate system.

2. RELATIVISTIC BOUNDARY CONDITIONS

In order to introduce relativistic boundary conditions, we need first
to consider a point on the boundary in its co-moving frame of
reference, the frame where this point of the boundary is observed
as being at rest. At this location (4), (5) apply. Obviously, right
from the beginning this presents a problem when adjacent points on
the boundary move at different velocities: inasmuch as (4), (5) are
derived from integral considerations (by constructing the elementary
“pillboxes” and “rectangles” at rest on the surface, as demonstrated in
many a textbook), it is unclear to what extent (4), (5) hold when the
boundary changes in time. This indicates that relativistically exact
boundary conditions are adequate for a limited class of boundaries
only. Moreover, strictly speaking, Special Relativity as defined above in
terms of the covariance of (1), the Lorentz transformation (8), and the
field transformations (16), applies only to constant velocities, otherwise
the model breaks down. For example, if in (8) v(2 �→1) is not a constant
in time, the inversion of X(2) = X(2)[X(1)] as in (8) will not yield the
same formulas for X(1) = X(1)[X(2)], as claimed above.

Let us therefore assume that for the time being we are dealing
with constant velocities. Consider two moving media separated by a
boundary. The boundary’s co-moving frame of reference is denoted
by Γ(b), and the media are at rest in their respective frames of
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reference Γ(1), Γ(2), moving relative to the boundary with velocities
v(1 �→b), v(2 �→b), respectively. It follows that conforming with (4), (5)
we now have,

n̂(b) ×
(
E(b)

1 − E(b)
2

)
= 0 (17)

n̂(b) ×
(
H(b)

1 − H(b)
2

)
= 0 (18)

which according to (16) become

n̂(b)×
(
Ṽ(b�→1) ·(E(1)

1 +v(b�→1)×B(1)
1 )−Ṽ(b�→2) ·(E(2)

2 +v(b�→2)×B(2)
2 )

)
=0
(19)

n̂(b)×
(
Ṽ(b�→1) ·(H(1)

1 −v(b�→1)×D(1)
1 )−Ṽ(b�→2) ·(H(2)

2 −v(b�→2)×D(2)
2 )

)
=0
(20)

respectively. Problems of this kind have been discussed in the past,
e.g., see [7], see also [6, 8] for many related references.

3. THE LORENTZ FORCE AND BOUNDARY
CONDITIONS

To the first order in v/c, in (19), (20) the dyadics Ṽ(b�→1) = Ṽ(b�→2) = Ĩ
and are therefore ignored, yielding respectively

n̂(b)×
(
E(1)

1 +v(b�→1)×B(1)
1 − E(2)

2 − v(b�→2)×B(2)
2

)
= 0 (21)

n̂(b)×
(
H(1)

1 −v(b�→1)×D(1)
1 − H(2)

2 + v(b�→2)×D(2)
2

)
= 0 (22)

At this point it is noted that the Lorentz force f (1)
e acting on

a charge (which is a relativistic invariant q
(1)
e = q(2) = q

(b)
e ) on the

boundary, measured in Γ(1), in terms of its native coordinates X(1), is
given by

f (1)
e = q(b)

e

(
E(1) + v(b�→1) × B(1)

)
(23)

The above remark that we deal in terms of one and the same coordinate
system, i.e., f (1)

e , E(1), v(b�→1), B(1) are all functions of X(1), is crucial
to the implementation of the Lorentz force formula and although some
formulas are similar in form to the relativistic ones, the arguments are
different.
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It follows that if magnetic sources were existent, we would be able
to measure magnetic Lorentz forces, and corresponding to (23), we
would have

f (1)
m = q(b)

m

(
H(1) − v(b�→1) × D(1)

)
(24)

Thus (21), (22) can be rewritten, respectively, in the form

n̂(b) ×
(
f (1)
e − f (2)

e

)
= 0 (25)

n̂(b) ×
(
f (1)
m − f (2)

m

)
= 0 (26)

The Lorentz force, and the relativistically exact boundary con-
ditions, agree to the first order in v/c only. This indicates that one
should use (25), (26) only for relatively moderate velocities. Most
practical problems are of this nature. On the other hand, the Lorentz
force formula does not assume a constant velocity, hence in (23), (24)
v(X(∗)) may be any function of space and time.

A plethora of special cases of interest are offered by (19), (20)
and the corresponding (21), (22). Of course the simplest case involves
vanishing velocities, leading back to (10), (11). When the boundary is
at rest with respect to medium Γ(2), (21), (22) become, respectively

n̂(b) ×
(
E(1)

1 + v(b�→1) × B(1)
1 − E(2)

2

)
= 0 (27)

n̂(b) ×
(
H(1)

1 − v(b�→1) × D(1)
1 − H(2)

2

)
= 0 (28)

This corresponds to a class of problems where objects, defined by
the material they are composed of, and by the time-independent
boundary surface specified in their co-moving frame, move through the
external medium. Immediately the question of mechanical continuity
arises: Rigorously speaking, the motion of the scatterer relative to the
external medium causes some flow pattern which should be taken into
account. Problems of this kind which combine the fluid-dynamic and
electrodynamic effects are more difficult to solve, e.g., see [9, 10], and
will not be considered here. Rather, the mechanical flow considerations
will be ignored as done in [7].

The shortcoming of such an arbitrary model which ignores the
fluid-dynamical interactions is obvious. However in many cases, and
until more thorough solutions are available, it is considered as an
acceptable approximation. This is evident in the geometry of the
Fizeau experiment. For an historical background regarding the Fresnel
drag coefficient and the related Fizeau experiment see for example
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[6, 8]. In the classical Fizeau experiment light is passed through a
fluid moving in a long tube, entering and leaving through transparent
window interfaces. Of course, in the regions where the fluid is injected
and drained, the fluid dynamical non-uniform flow affects the situation,
but these effects have been always ignored. Problems of this kind would
correspond to (21), (22) in the form

n̂(b) ×
(
E(1)

1 − E(2)
2 − v(b�→2) × B(2)

2

)
= 0 (29)

n̂(b) ×
(
H(1)

1 − H(2)
2 + v(b�→2) × D(2)

2

)
= 0 (30)

respectively, where v(b�→1) = 0 is assumed, and the velocity effects are
introduced via v(b�→2). Recent analytical work on such a situation is
given by [11].

The rest of this study is devoted to demonstrate the feasibility
of the present model. Two cylindrical problem are chosen, sufficiently
complicated to show the power of the formalism. The solutions are
outlined with sufficient detail to show the feasibility.

4. SCATTERING BY A LINEALLY MOVING CYLINDER

In the recent foray into the subject of scattering by moving boundaries
based on the Lorentz force formulas [2], we analyzed the problem of
scattering by a circular cylinder with a cross-sectional radius R, excited
by a wave moving in free space perpendicularly to the cylindrical
axis. As mentioned above, free space was assumed regardless whether
we consider the scatterer in motion or at rest. This assumption is
consistent with (15), whereby for v

(1)
ph = c we obtain v

(2)
ph = v

(1)
ph = c.

To the first order in v/c the results also agree with the relativistically
exact solution [5, 12].

Presently the analysis is extended to the case of a cylinder moving
through an arbitrary material medium. As explained above, the
fluid-dynamical interaction of the external and internal media at the
boundary is ignored.

The excitation plane wave in the external medium (indicated by
“1 ”) is given by

Eex = ẑEex, Hex = −ŷHex

Eex = Eex0e
iϕex , Hex = Hex0e

iϕex , ϕex = kexx− ωext

kex/ωex = (µ(1)ε(1))1/2 = 1/v(1)
ph , Eex/Hex = (µ(1)/ε(1))1/2 = ζ(1)

(31)
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with Eex polarized along the cylindrical z axis.
The cylinder moves according to x = vt, v = x̂v along the

direction of propagation of the exciting wave k̂ex. Accordingly we
define a local coordinate system rT denoted by index T in which the
boundary is at rest

xT = x− vt = r cos θ − vt = rT cos θT
yT = y = r sin θ = rT sin θT

(32)

A simple substitution of (32) into (31) amounts to a Galilean trans-
formation and is avoided. However it is noted that in (13), to the
first order in v/c, the frequency transforms identically for the Galilean
and Lorentzian transformations. Therefore we consider the time signal
obtained by substituting (32) into (31) for the local origin rT = 0. Of
course we have the freedom of shifting (32) to a different origin, which
will introduce a constant factor in (32). Therefore choosing rT = 0 as
our reference, although this point is geometrically inside the cylinder
and not accessible to the external waves, makes for a more symmetrical
situation but is not mandatory. Thus we obtain

ϕ0 = ϕex|rT =0 = −ωT t

ωT = ωex(1 − β(1)), β(1) = v/v
(1)
ph

(33)

At any other location rT we have to include an appropriate phase
shift as prescribed by the first line of (13)

ϕT = kTxT − ωT t, kT = kex

(
1 − β(1)A(1)

)
(34)

which in free space A = 1 reduces to the results in [2]. Specifically, at
the cylinder’s rim we have a time-dependent signal eiϕT

ϕT = kTR cos θT − ωT t (35)

Observe that (34), (35) imply ϕT �= ϕex, unless we qualify t. This
point does not invalidate the following analysis, and will be picked up
again in Section 5.

In order to include the amplitude effect, (27), (28), (31) prescribe

EexT = Eex + v × Bex = Eex + v × µ(1)Hex = ẑEexT

EexT = E0T e
iϕT , E0T = Eex0(1 − β(1))

(36)

and similarly

HexT = Hex − v × Dex = Hex − v × ε(1)Eex = −ŷHexT

HexT = H0T e
iϕT = E0T e

iϕT /ζ(1), H0T = Hex0(1 − β(1)) (37)
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In (36), (37) we are not dealing with a wave, rather with a time-
dependent signal field measured at an arbitrary fixed point rT , and
the question of (36) and (37) representing a wave, satisfying a solution
of the wave equation and dispersion relation does not arise.

Recasting (35)–(37) in a Fourier-Bessel integral yields

EexT = ẑE0T e
−iωT tΣ, HexT = −ŷE0T e

−iωT tΣ/ζ(1)

Σ =
∞∑

m=−∞
imJm(kTR)eimθT

(38)

with Jm denoting the non-singular Bessel functions. The medium
inside the cylinder is at rest relative to the boundary. In a consistent
manner, we define Ein, the field inside the cylinder, in terms of the
frequency prescribed by (33), and non-singular cylindrical functions

Ein = ẑEin = ẑE0T

∞∑
m=−∞

imBmJm(kinrT )eimθT−iωT t

kin/ωT = (µ(2)ε(2))1/2 = 1/v(2)
ph

(39)

with index “2 ” characterizing the material in the internal domain.
The computation of the coefficients Bm, subject to the boundary
conditions, is carried out below. Note that in (39) we have normalized
the coefficients Bm with respect to E0T , the amplitude value attained
by the excitation wave at the boundary. From (1) the associated field
Hin is derived as

Hin =
(
r̂T r−1

T ∂θT
− θ̂T∂rT

)
Ein/(iωTµ

(2)) (40)

Similarly to (39), on the boundary we substitute in (39), (40) rT = R.
The boundary condition, as in (28) involves

r̂T × HinT = −ẑkin∂kinREinT /(iωTµ
(2))

= ẑE0T e
−iωT t

∞∑
m=−∞

im+1BmJ ′
m(kinR)eimθT /ζ(2)

Ein/Hin = (µ(2)/ε(2))1/2 = ζ(2)

(41)

where the prime on J ′
m denotes differentiation of the Bessel function

with respect to its argument.
In order to evaluate the scattered field, we need to discuss plane

waves, polarized along the cylindrical z axis and propagating in an
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arbitrary direction indicated by angle α with respect to the x axis

Eα = ẑEα, Hα = k̂α × ẑHα, Eα = Eα0e
iϕα , Hα = Hα0e

iϕα

ϕα = kα · r − ωαt = kαr cos(θ − α) − ωαt = kα,xx + kα,yy − ωαt

kα,x = kα cosα, kα,y = kα sinα, kα/ωα = (µ(1)ε(1))1/2 = 1/v(1)
ph

(42)

which for α = 0 reduce to (31). According to (32), and similarly to
(33), the phase of (42) at rT = 0 is given by

ϕα0 = ϕα|rT =0 = −ωαT t

ωαT = ωα(1 − β(1) cosα)
(43)

which for α = 0 reduce to (33).
The boundary conditions must be satisfied at all times. Conse-

quently the scattered wave must be constructed in such a way that
on the cylinder’s rim the time dependence is identical to that of the
incident wave there. Therefore we must satisfy

ωαT = ωT

ωα = ωex(1 − β(1))/(1 − β(1) cosα)

= ωex

(
1 + β(1)(cosα− 1)

)
+ O

(
β(1)

)2
(44)

where the last line (44) applies to first order in β(1), which should
be consistently used due to our non-relativistic premises stated above.
Incorporating (13), we get similarly to (34) and (35), to the first order
in v/c

ϕαT = kαT · rT − ωαT t

= kα

(
cosα− β(1)A(1)

)
rT cos θT + kαrT sinα sin θT − ωT t

= kα · rT − ωT t− β(1)kexA
(1)rT cos θT

(45)

Specifically at the cylinder’s rim (45) applies with rT = R. By
substituting from (44) into (45) we thus get

ϕαT = Kk̂α · r̂T − ωT t + β(1)KB

B = (Cα − 1)(CθT
Cα + SθT

Sα) − CθT
A(1)

K = kexR, Cσ = cosσ, Sσ = sinσ

(46)
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where in (46) the term B explicitly displays the extra velocity-
dependent terms. Once again note that (45), (46) imply ϕαT �= ϕα,
unless we qualify t.

Similarly to (36), (37), the amplitude effect is included, yielding

EαT = Eα + v × Bα = Eα + v × µ(1)Hα = ẑEαT

EαT = Eα(1 − β(1)Cα) = Eα0T e
iϕαT , Eα0T = Eα0(1 − β(1)Cα)

HαT = Hα − v × Dα = Hα − v × ẑε(1)Eα = Hα + ŷβ(1)Hα

HαT = Hα0T e
iϕαT = EαT /ζ

(1), Hα0T = Hα0(1 − Cαβ
(1)) (47)

For simplicity, we will first concentrate on the problem of the
perfectly conducting cylinder, for which only the E fields matter.
Inasmuch as all the E fields in our problem are polarized along the
z axis, the problem becomes scalar and therefore less cumbersome.

The general approach towards the construction of the scattered
wave is to assume a superposition (integral) of plane waves, as
prescribed by (42)

Esc = ẑE0T
1
π

∫
C
eikαr cos(θ−α)−iωαtG(α)dα (48)

once again normalizing the amplitude with respect to E0T as in (39).
The weighting function G(α) depends on the angle of propagation α,
and can be represented in terms of its Fourier series

G = G(α) =
∞∑

m=−∞
Ameimα (49)

where for the limiting case β(1) = 0, G(α) (49) reduces to

g = g(α) =
∞∑

m=−∞
ameimα (50)

It is noted that by judiciously shifting indices we can recast a Fourier
series

e∓inα
∞∑

m=−∞
ameimα =

∞∑
m=−∞

am±ne
imα = g±n (51)

for finite integers n, where the notation g±n, and g0 = g when there
is no shift, will save us some tedious writing. The coefficients am in
(50) are presumably known — obtained either analytically, or acquired
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experimentally. The contour C must yet be determined such that we
get outgoing waves. This will be clarified below.

At the boundary rT = R all the plane waves in the integrand
(48) possess the same time-dependence, according to (44), and at the
cylinder’s rim the integral in (48) becomes according to (46)

e−iωT t 1
π

∫
C
eiK cos(θT−α)+iβ(1)KBG(α)dα (52)

There is not much point in trying to acquire an exact representation
of (52), e.g., by recasting exponentials in terms of series of Bessel
functions. That would lead to hopelessly complicated expressions, and
in any case any concrete computation will necessitate the truncation of
the series. Usually K = kexR is finite and not too large, otherwise we
would treat the cylinder at the limiting case of small curvature, e.g.,
assume the surface as locally plane. Also β(1) is small for practical
cases. Therefore only the first order in Kβ(1) will be retained, in the
form

e−iωT t 1
π

∫
C
eiK cos(θT−α)

(
G + iβ(1)KBg

)
dα (53)

where in (53) we have already used g, the zero order approximation,
instead of G.

Taking into account the amplitude effect, (47), adds another factor
1− β(1) cosα in the integrand, hence for the first order velocity effects
we obtain

EscT = ẑE0T e
−iωT t 1

π

∫
C
eiK cos(θT−α)

(
G + β(1)gh

)
dα

h = iKB − Cα = D1 + D2Cα + D3CαSα + D4Sα + D5C
2
α

D1 = iKCθT
A(1), D2 = −(1 + iKCθT

), D3 = iKSθT
,

D4 = −iKSθT
, D5 = iKCθT

(54)

Nota bene in (54) that the terms D1 . . . D5 are functions of θT and
therefore do not participate in the integration. Raising and lowering
indices according to (51), we recast the first order velocity effects in
(54) as

gh =D1g0 + D2(g+1 + g−1)/2 + iD3(g+2 − g−2)/4
+ iD4(g+1 − g−1)/2 + D5(g+2 + 2g0 + g−2)/4

(55)

and we have to manipulate the integral (54), (55) to derive proper
expressions for G.
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For simplicity we shall first focus on the problem of scattering by
a perfectly conducting cylinder. Substituting (55) back into (54) yields
a sum of integrals, with the appropriate function G(α) or g±n(α) in
the integrand, the integrals being multiplied by the appropriate terms
D1 . . . D5 involving SθT

, CθT
which are treated as coefficients and taken

outside the integral sign.
Consequently we now choose C as the contour of integration

appearing in the Sommerfeld integral for the Hankel functions (see
for example Stratton [13]) of the first kind, H(1)

m = Hm, which coupled
with the time factor e−iωT t produce outgoing waves∫

C
=

∫ θT +(π/2)−i∞

θT−(π/2)+i∞
(56)

Accordingly (54), (55) is now recast in series of cylindrical functions in
the form

EscT = ẑE0T e
−iωT t

∞∑
m=−∞

imHm(K)eimθT{Am+β(1)[D1am+D2(am+1+am−1)/2

+ iD3(am+2−am−2)/4+iD4(am+1−am−1)/2+D5(am+2+2am+am−2)]}
(57)

Our goal is to compute the coefficients Am, but in order to achieve
it, we need to recast (57) in a series orthogonal in eimθT . To that end
we recast the trigonometric functions in D1 . . . D5 as exponentials, and
judiciously raise and lower indices in the various series. Thus we find

EscT = ẑE0T e
−iωT t

∞∑
m=−∞

imeimθT [AmHm(K) + β(1)Fm(K)]

Fm(K) = D6 + D7 + D8 + D9 + D10

D6 = KA(1)(am+1Hm+1 − am−1Hm−1)/2
D7 =−Hm(am+1+am−1)/2+K[Hm+1(am+2+am)−Hm−1(am+am−2)]/4
D8 = K[Hm−1(am+1 − am−3) + Hm+1(am+3 − am−1)]/8
D9 = −K[Hm+1(am+2 − am) + Hm−1(am − am−2)]/4
D10 =K[Hm−1(am+1+2am−1+am−3)−Hm+1(am+3+2am+1+am−1)]/8

(58)

In (58) all the terms Hm and D6 . . . D10 are functions of K = kexR,
and do not involve the angle θT . For the perfectly conducting cylinder
the total field at the surface vanishes, i.e., in accordance with (27)

r̂T × (EexT + EscT ) = 0 (59)
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Specifically, (38), (58) and the orthogonality with respect to eimθT

prescribe

AmHm(kexR) + β(1)Fm(kexR) + Jm(kTR) = 0 (60)

which is an explicit family of equations for the needed coefficients Am,
in terms of coefficients already known from the velocity-independent
solution. For β(1) = 0 (60) is recognized as the equation obtained for
a perfectly conducting cylinder at rest.

The boundary conditions for arbitrary media are prescribed by
(27), (28), which for the present case become

r̂T × (EexT + EscT − EinT ) = 0 (61)
r̂T × (HexT + HscT − HinT ) = 0 (62)

For (61) all the ingredients are already available: instead of (60) we
now need to include the internal field given by (39), yielding

AmHm(kexR) + β(1)Fm(kexR) + Jm(kTR) = BmJm(kinR) (63)

thus providing one family of equations for the unknowns Am, Bm.
In order to evaluate (62), we start with (37) and derive

r̂T × HexT = −r̂T × ŷE0T e
−iωT tΣ/ζ(1)

= −ẑ cos θTE0T e
−iωT tΣ/ζ(1) = ẑE0T e

−iωT tΣ′/ζ(1),

Σ′ = − cos θTΣ =
∞∑

m=−∞
im+1J ′

m(kTR)eimθT

(64)

For the internal field r̂T × HinT is already specified by (41). For the
scattered wave we start with (42), (47), now prescribing

r̂T × HαT = r̂T ×
(
Hα + ŷβ(1)Hα

)
= Hαr̂T ×

(
k̂α × ẑ + ŷβ(1)

)

= Hαẑp = Eαẑp/ζ(1) = Eαp/ζ
(1) (65)

p = −r̂T · k̂α + β(1) |r̂T × ŷT | = − cos(θT − α) + β(1) cos θT

The argument that started from the single wave (42), (47) leads us to
(65), in terms of the associated Eα field. The total scattered wave at
the boundary was given by (54), therefore from (65) it follows that

r̂T × HSCT= ẑ(E0T /ζ
(1))e−iωT t 1

π

∫
C
eiK cos(θT−α)Idα

I= (G+β(1)gh)p= −G cos(θT − α)+β(1)g(cos θT − h cos(θT − α))
(66)
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It is noted that in (66) the factor − cos(θT − α) is tantamount to
applying a differentiation operator i∂K to the exponential in the
integral, and can be pulled outside the integral sign, yielding

r̂T × HscT = ẑ(E0T /ζ
(1))e−iωT t

∞∑
m=−∞

im+1eimθT (AmH ′
m + β(1)Im)

Im(K) = F ′
m + (am+1Hm+1 − am−1Hm−1)/2

(67)

where in (67) the prime on H ′
m, F ′

m denotes differentiation with respect
to the argument K.

We finally find an explicit expression for (62)

AmH ′
m(kexR) + β(1)Im(kexR) + J ′

m(kTR) = Bm(ζ(1)/ζ(2))J ′
m(kinR)

(68)

Together, (63), (68) provide two explicit families of equations for the
coefficients Am, Bm, and thus the problem is considered as solved.

5. EVALUATION OF THE SCATTERED WAVE
INTEGRAL

Thus far we have concentrated on the question of deriving appropriate
equations for the scattering coefficients Am. We need now to discuss
the evaluation of the scattered wave integral (48), assuming that the
scattering amplitude G(α) is by now a known function. We will
consider two methods, suitable for various circumstances.

This goal is achieved by first effecting a coordinate transformation
in (48) that will allow us to take the time factor outside the integral
sign, as in (52). For ϕαT = ϕα to the first order in v/c we need to
define in (34), (45), (46) a modified time tT instead of t

tT = t− v · r/c2 (69)

The definition (69) is recognized as the first order in v/c relativistic
Lorentz transformation for the time. This also corrects a deficiency in
[2], where this step was overlookedd.

Thus we obtain

Esc(r, t) = Esc(rT , tT ) = ẑE0T e
−iωT tT

1
π

∫
C
eiκ cos(θT−α)+iβ(1)κBG(α)dα

κ = kexrT
(70)
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where the contour for (70) is chosen as in (56).
Using the same technique employed above in (54) prescribes now

Esc(rT , tT ) = ẑE0T e
−iωT tT

1
π

∫
C
eiκ cos(θT−α)

(
G + iβ(1)κBg

)
dα (71)

The situation in (71) is different from (54). First of all we have
excluded the Lorentz force boundary considerations expressed in (54),
which was expressed by −Cα in the term h = iKB − Cα. Also note
that this approximation holds only to the first order in β(1)κ. If we
attempt to express rT in terms of r according to (32), it becomes clear
that (71) holds only for short time intervals for which the scattered
wave is measured in the vicinity of the scatterer. This is of course
a severe limitation on the solution. Subject to this limitation (71)
can be expressed as in (54), replacing K by κ and modifying D2 to
D2 = −iκCθT

. Consequently (55) applies with this modification, and
(57) follows. We could leave the modified (57) as the final solution,
because there is no further need to exploit the orthogonality relation.
However, it is easy to continue one step and finally recast (58) in the
form

Esc(rT , tT ) = ẑE0T e
−iωT tT

∞∑
m=−∞

imeimθT [AmHm(κ) + β(1)Lm(κ)]

Lm(κ) = D6 + D7 + D8 + D9 + D10

D6 = κA(1)(am+1Hm+1 − am−1Hm−1)/2
D7 = κ[Hm+1(am+2+am)−Hm−1(am+am−2)]/4
D8 = κ[Hm−1(am+1 − am−3) + Hm+1(am+3 − am−1)]/8
D9 = −κ[Hm+1(am+2 − am) + Hm−1(am − am−2)]/4
D10 =κ[Hm−1(am+1+2am−1+am−3)−Hm+1(am+3+2am+1+am−1)]/8

(72)

where in (72) the coefficients Am are by now already computed and
known.

The result (72) is interesting because it shows the interaction of
the different multipoles and the creation of new velocity-dependent
multipole terms. This phenomenon was observed previously in the
free space case [2, 5, 12].

Once (72) is available, the coordinates r, t are substituted for
rT , tT using (32), (69). This completes the computation and provides
for a solution in terms of the original coordinate system.

The shortcomings of the approximation (72) stems from the fact
that the solution contains the distance factor κ. We now return to
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(70) to consider the exact solution (although still to the first order in
of v/c), expressed in terms of inverse powers of κ, and thus applicable
to arbitrary intermediate and large distances. Combining the velocity-
dependent term in the exponential with the scattering amplitude, we
now rewrite (70) in the form

Esc(rT , tT ) = ẑE0T e
−iωT tT

1
π

∫
C
eiκ cos(θT−α)Q(α,θT ,rT )dα

Q(α, θT , rT ) = eiβ
(1)κBG(α) =

∞∑
m=−∞

qm(θT ,rT )eimα
(73)

Note in (73) the dependence of Q(α, θT , rT ) on θT , rT . This does
not affect the integration which is performed with respect to α only,
therefore we allow varying coefficients qm(θT , rT ).

We use a method which represents the solution in terms of a series
of inverse distance powers and appropriate differential operators. This
method has been devised by Twersky [14] as an asymptotic series,
and was later presented as an exact series [15]. The number of terms
retained before the series is truncated depends on the distance from
the scatterer. Essentially, it is shown [14] that (74) can be represented
asymptotically by

Esc(rT , tT )=ẑE0T e
−iωT tT Dα{Q(α, θT , rT )}

Dα{Q}=H

(
1 +

1 + 4∂2
α

i8κ
− 9 + 40∂2

α + 16∂4
α

128κ2
· · ·

)
Q(α,θT ,rT )

∣∣∣∣∣
α=θT

=H
∑
µ=0

(1+4∂2
α)(9+4∂2

α) · · ·([2µ−1]2+4∂2
α)

(i8κ)µµ!
Q(α,θT ,rT )

∣∣∣∣∣
α=θT

H=H(κ) = (2/(iπκ))1/2eiκ

(74)

Although (74) is true to the original in [14], the present case is a
little more subtle, since the expression Q(α,θT ,rT ) standing for the
scattering amplitude already involves both α and θT . Thus |α=θT

in
(74) prescribes that we first perform the indicated differentiations with
respect to α, and then substitute α = θT in the results.

The exact series (in the sense of a convergent series, as opposed
to (74) which is only asymptotically convergent) in [15] follow a
similar scheme, and the differential operators are based on the Lommel
polynomials [16], and instead of the asymptotic form H(κ), the
functions H0, H1 feature in the analog of (74).
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According to (74), the leading term for the asymptotic approxi-
mation is

Esc(rT , tT ) = ẑE0T e
iκ+iβ(1)κB−iωT tT (2/(iπκ))1/2 G(θT )

B = CθT
(1 −A(1)) − 1

(75)

which also follows from the steepest descent or the saddle point
approximations for integrals with a complex exponential kernel. Ac-
cordingly, as kexrT becomes large, the main contribution to the
integral’s value is due to angles α in the vicinity of θT , while at other
angles the phasors described by the exponential change rapidly and
tend to mutually cancel. These are the same ideas leading to the
Cornu spiral theory for knife edge diffraction (Fresnel diffraction at a
straight edge), see for example [17].

Once again, after deriving Esc(rT , tT ) from (73)–(75), (32), (69)
are exploited in order to finally derive Esc(rT , t) in terms of the original
coordinates. Thus the problem can finally be considered as solved.

6. SCATTERING BY A MEDIUM IN MOTION

In a sense, the subsequent problem is complimentary to that of the
moving cylinder analyzed above. It also constitutes a new version of
the Fizeau experiment (e.g., see [6, 8]) considered here for motion of a
fluid within a cylinder. Most of the ingredients for the solution we seek
are already outlined by the formulas given above. Here we consider a
cylindrical boundary at rest with respect to the external medium “1 ”.
Observed from the boundary at rest in “1 ”, the interior medium “2 ”
moves according to the velocity x = −vt, v = −x̂v, i.e., in the opposite
direction of k̂ex given in (31). This means that from medium “2 ”, in
terms of its local rest coordinate system ξ, η, the boundary is observed
to move according to ξ = vt, v = ξ̂v = x̂v. Subject to the new
configuration, instead of (32) we now have

ξ = x + vt = r cos θ + vt = ρ cos τ
η = y = r sin θ = ρ sin τ

(76)

where in (76) x = xT , y = yT are the coordinates both for the incident
and scattered wave, and for the boundary at rest, while ξ, η are the
coordinates for the internal medium “2 ” at rest.

The relevant boundary conditions are given by (21), (22) with
v(b�→1) = 0. Consequently for the observer in medium “1”, at rest with
respect to the boundary, no Doppler frequency shifts occur.
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At the boundary the tangential fields of the excitation wave (31)
prescribes, instead of (38), (64)

EexT = ẑEex0e
−iωextΣ, r̂T × HexT = ẑEex0e

−iωextΣ′
/ζ(1)

Σ =
∞∑

m=−∞
imJm(K)eimθ, Σ′ =

∞∑
m=−∞

im+1J ′
m(K)eimθ, K = kexR

(77)

Note that once again we suppress the subscript T on tT .
At the boundary, the tangential field components of the scattered

wave are given by the velocity-independent expressions

EscT = ẑEex0e
−iωext

∞∑
m=−∞

imAmHm(K)eimθ

r̂T × HscT = ẑ(Eex0/ζ
(1))e−iωext

∞∑
m=−∞

im+1AmH ′
m(K)eimθ

(78)

Thus far all the terms relevant to the external medium “1 ” were
presented. In the interior domain “2 ” one has to consider the medium’s
motional effects too. We start with a plane wave propagating in an
arbitrary direction α as in (42), with the appropriate modifications

Eα = ẑEα, Hα = k̂α × ẑHα, Eα = Eα0e
iϕα , Hα = Hα0e

iϕα

ϕα = kα · ρ − ωαt = kαρ cos(τ − α) − ωαt = kα,ξξ + kα,ηη − ωαt

kα,ξ = kα cosα, kα,η = kα sinα, kα/ωα = (µ(2)ε(2))1/2 = 1/v(2)
ph

(79)

As in (43), (44), we start by using (76) to evaluate the phase of
the wave (79) at the r = 0. The associated frequency must be identical
to ωex of the incident and scattered waves

ϕα |r=0 = −ωαT t, ωαT = ωα(1 − β(2) cosα) = ωex

ωα = ωex(1 + β(2) cosα) + O(β(2))2, β(2) = v/v
(2)
ph

(80)

Using (13) we obtain for the phase of the wave (79), similarly to (45)

ϕαT = kαT · r − ωαT t

= kαr
(
cosα− β(2)A(2)

)
cos θ + kαr sinα sin θ − ωext

= kα · r − ωext− β(2)kexA
(2)r cos θ, A(2) = (v(2)

ph /c)2
(81)
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to the first order in β(2), and therefore, at r = R we obtain for the
phase of the wave (79) similarly to (46)

ϕαT = Kk̂α · r̂ − ωext + β(2)KB

B = Cα(CθCα + SθSα) − CθA
(2), K = kR, k = ωex/v

(2)
ph

(82)

the formal difference being the factor Cα in (82) instead of (Cα− 1) in
(46).

Similarly to (47), the amplitude effect is included, yielding

EαT = Eα + v × Bα = Eα + v × µ(2)Hα = ẑEαT

EαT = Eα(1 − β(2)Cα) = EαT0e
iϕαT , EαT0 = Eα0(1 − β(2)Cα)

HαT = Hα − v × Dα = Hα − v × ẑε(2)Eα = Hα + ŷβ(2)Hα

HαT = HαT0e
iϕαT = EαT /ζ

(2), HαT0 = Hα0(1 − β(2)Cα)

(83)

Mimicking (48), the internal field is constructed as a superposition
of waves. The contour should be chosen such that nonsingular
cylindrical functions Jm be involved. The Sommerfeld contour integral
for the nonsingular Bessel functions is therefore anticipated and we
write

Ein = ẑEex0
1
2π

∫ π

−π
eikαρ cos(τ−α)−iωαtGdα

G = G(α) =
∞∑

m=−∞
Bmeimα

(84)

where like in (50) for the limiting case β(2) = 0, G(α) reduces to

g = g(α) =
∞∑

m=−∞
bmeimα (85)

and the coefficients bm (85) are presumably known, as were am in (50).
As in (52), (53), by substituting from (82), the integral in (84)

becomes at the boundary

Ein = ẑEex0e
−iωext 1

2π

∫ π

−π
eiK cos(θ−α)+iβ(2)KBGdα

= ẑEex0e
−iωext 1

2π

∫ π

−π
eiK cos(θ−α)(G + iβ(2)KBg)dα + O(β(2))2

(86)
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Like in (54), the amplitude effect expressed in (83) is included,
yielding

EinT = ẑEex0e
−iωext 1

2π

∫ π

−π
eiK cos(θ−α)(G + β(2)gh)dα

h = iKB − Cα = D1 + D2Cα + D3CαSα + D5C
2
α

D1 = −iKCθT
A(2), D2 = −1, D3 = iKSθT

, D5 = iKCθT

(87)

where in (87) we have retained the enumeration of indices, in spite
of the redundant D4 = 0, in order to preserve the similarity to (54).
Similarly to (55), we now have

gh =D1g0 + D2(g+1 + g−1)/2

+ iD3(g+2 − g−2)/4 + D5(g+2 + 2g0 + g−2)/4
(88)

and as in (57), when considered within the integral (87), the expression
(88) prescribes

EinT =ẑEex0e
−iωext

∞∑
m=−∞

imJm(K)eimθ{Bm + β(2)[D1bm

+ D2(bm+1 + bm−1)/2 + iD3(bm+2 − bm−2)/4

+ D5(bm+2 + bam + bm−2)/4]}

(89)

Similarly to (58), we find for the present case

EinT = ẑEex0e
−iωext

∞∑
m=−∞

imeimθ[BmJm(K) + β(2)Fm(K)]

Fm(K) = D6 + D7 + D8 + D10

D6 = KA(2)(bm+1Jm+1 − bm−1Jm−1)/2

D7 = −Jm(bm+1 + bm−1)/2

D8 = K[Jm−1(bm+1 − bm−3) + Jm+1(bm+3 − bm−1)]/8

D10 =K[Jm−1(bm+1+2bm−1+bm−3)−Jm+1(bm+3+2bm+1+bm−1)]/8
(90)

where in (90) Jm = Jm(K) etc., and we have once again retained the
redundant enumeration of indices, in spite of D9 = 0, in order to point
out the similarity.
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The implementation of (61) led to (63). Similarly, (77), (78), (90),
yield

AmHm(K) + Jm(K) = BmJm(K) + β(2)Fm(K)

K = kexR, K = kR, k = ωex/v
(2)
ph

(91)

providing one family of equations for the coefficients Am, Bm.
The magnetic field boundary condition is prescribed by (62). For

vanishing velocity in the external domain, (64) becomes

r̂ × HexT = −r̂ × ŷEex0e
−iωextΣ/ζ(1) = ẑEex0e

−iωextiΣ′/ζ(1)

Σ′ =
∞∑

m=−∞
im+1J ′

m(K)eimθ (92)

Similarly for the scattered wave, (67) prescribes, for the external
medium at rest with respect to the boundary

r̂ × HscT = ẑEex0e
−iωext

∞∑
m=−∞

im+1AmH ′
m(K)eimθ/ζ(1) (93)

For the internal field we start with the analog of (65) for the present
case

r̂ × HαT = r̂ ×
(
Hα + ŷβ(2)Hα

)
= Hαr̂ ×

(
k̂α × ẑ + ŷβ(2)

)

= Hαẑp = Eαẑp/ζ(2) = Eαp/ζ
(2) (94)

p = −r̂ · k̂α + β(2)|r̂ × ŷ| = − cos(θ − α) + β(2) cos θ

and similarly to (66)

r̂ × HinT = ẑ(Eex0/ζ
(2))e−iωext 1

2π

∫ π

−π
eiK cos(θ−α)Idα

I = (G + β(2)gh)p = −G cos(θ − α) + β(2)g(cos θ − h cos(θ − α))
(95)

Once again note in (95) the factor − cos(θ − α), corresponding to
differential operator i∂K applied to the exponential in the integral,
yielding as in (67)

r̂ × HinT = ẑ
(
Eex0/ζ

(2)
)
e−iωext

∞∑
m=−∞

im+1eimθ
(
BmJ ′

m(K) + β(2)Im(K)
)

Im(K) = F
′
m + (bm+1Jm+1 − bm−1Jm−1)/2 (96)
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Finally, corresponding to (68), we get now

AmH ′
m(K) + J ′

m(K) = (ζ(1)/ζ(2))
(
BmJ ′

m(K) + β(2)Im(K)
)

(97)

together with (91) providing the second family of equations needed to
solve for Am, Bm.

Inasmuch as the goal here is to find the scattered field in the
external domain, there is no need to derive the full solution of the
internal wave field, as prescribed by (84), the way it has been done
for the moving cylinder in (71), (72), although this can be done.
Unlike (72), here the interior of the cylinder is a finite domain, and
the approximation to the first order of kexrβ(2) is valid. With that the
problem is considered to be solved.

7. SUMMARY AND CONCLUDING REMARKS

Time-dependent boundary conditions are encountered when moving
objects and/or moving media are present. Unlike other branches
of physics, e.g., elastodynamics, in electrodynamics it is not only a
question of applying the time dependence to such boundary conditions
— they first of all must be properly defined, as we did above. One
approach of dealing with the problem was by avoiding it: Having at
our disposal Einstein’s Special Relativity theory, one can use what Van
Bladel [6] nicknamed “frame hopping”. Accordingly one transforms the
problem to the co-moving frame of reference of the boundary at rest,
solves the problem, then transforms the results back into the original
“laboratory frame of reference”. Direct solutions involving time-
dependent media are also referenced in [6, 8], for example when the
media are moving parallel to the boundaries, such that the Minkowski’s
constitutive relations can be implemented e.g., see [1, 5]. See also [2]
where the equivalence of Minkowski’s constitutive relations and the
boundary conditions based on the Lorentz force formulas is discussed.

Armed with the arsenal of previous results, a direct approach
based on the Lorentz force formulas was recently suggested, and some
problems involving objects moving in free space have been discussed
[2]. To the first order in v/c the two methods are in agreement.

Presently the feasibility of implementing the formalism to prob-
lems involving arbitrary media and boundaries in motion was exam-
ined. In order to present concrete and explicit results, two cylindrical
problems have been chosen, which turn out to be complementary in
many respects: the moving cylinder, and the cylindrically shaped
moving medium. In order to demonstrate the feasibility, the com-
putations are worked out in great detail.
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Not surprisingly, problems of this kind give rise to mode inter-
action, whereby the solution for coefficients of some order m involves
velocity-independent coefficients of other orders, e.g., m ± 1,m ± 2,
etc. Thus for example, a moving thin cylinder which at rest exhibits a
monopole pattern for the scattered field, will in the presence of motion
involve velocity-dependent higher order monopoles. This phenomenon
has been observed before [5, 12].

Future work will have to deal with various configurations and eval-
uate appropriate solutions analytically, and also provide simulations.
For example, objects whose shapes are perturbed by periodic mechan-
ical motion seem to be of interest for practical problems involving
remote sensing of motion and vibration, from rotating and vibrating
objects in the mechanical workshop to the problem acquisition of
signatures of airplanes, helicopters, and various missiles, who have such
motional elements. The present formalism will provide a consistent
approach based on first principles.
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