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Abstract—This paper is concerned with the scattering of an
electromagnetic (EM) pulse by a perfectly conducting half-plane,
moving in a free space. It is assumed that the source signal is a plane
wave pulse with its envelope described by a Dirac delta function. The
representation for the total field is found, and physical interpretation of
the solution is given. This representation, valid for all screen velocities,
is then reduced to the case of moderate and low velocities, important
for practical applications.

1. INTRODUCTION

Electromagnetic wave scattering by moving objects has a long history
and is interesting from both practical and theoretical point of view. Its
applications can be found in telecommunication, object recognition,
space science and astronomy. Of special interest are scattering objects
with edges. In [1] plane wave diffraction by a moving cylinder was
analyzed and such phenomena as Doppler shift of equiphase surfaces
in the diffracted wave and angular shift of the location of its amplitude
singularities were reported. Those phenomena were also confirmed in
[2], where diffraction by a wedge in motion was considered. In more
recent work [3], concerned with plane wave diffraction by a moving
half-plane, similar phenomena were noticed, and also a rotation of the
incident and reflected wave shadow boundaries were observed. In [4–
6] different solving approaches were analyzed and effectively applied
to problems with Gaussian beam excitations and moving cylinder and
wedge shaped obstacles.

Most of works on wave scattering by objects with edges, including
all those aforementioned, deal with time harmonic fields. In this paper
we extend the results obtained in [3] to the case where the exciting field
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is a pulse signal, with its envelope described by a Dirac delta function.
The moving object is a half-plane, which is the simplest structure
possessing an edge. The problem studied herein is 2-dimensional. In
the analysis we employ two frames of reference, the laboratory frame,
in which the source field is given, and the primed frame, in which the
half-plane is at rest. Quantities in both frames are related through
the Lorentz transformation. We take advantage of Fourier and Felsen
[7] integral techniques which enable representation of transient fields
via time-harmonic ones. Essential in our analysis is the well known
Sommerfeld solution for the diffraction of a time harmonic plane wave
by a stationary half-plane. We find the total electromagnetic field
in the laboratory frame, give its physical interpretation, and finally
simplify it to the case of non-relativistic velocities, that is important
for practical applications.

Solutions corresponding to exciting pulse signals with different
envelopes can be obtained by integration of the solution here obtained
with appropriate weight functions. In the model considered in this
paper it is assumed that both the scatterer and the surrounding
medium are frequency independent. This allows us to obtain the
solution in a relatively simple analytical form. As a consequence,
phenomena accounting for dispersive properties of real media are
neglected. It is believed that despite this simplification the results here
obtained can be of practical importance in applications. It is worth of
mentioning that even in the absence of a scatterer pulse evolution in a
dispersive medium is a complicated problem in itself (comp. [8–10]).

We have chosen Dirac delta function as the source signal envelope
because it plays a role of a Green function. It means that solutions to
related problems, with different envelope of the incident pulse, can be
obtained via integration of the solution here obtained with appropriate
weight functions (comp. [7]).

2. FORMULATION OF THE PROBLEM

Consider two inertial frames of reference S and S′, in which space-time
coordinates (x, y, z, t) and (x′, y′, z′, t′), respectively, are introduced.
The frame S is associated with a source pulse electromagnetic field, and
the frame S′ is used to describe a moving screen, on which the source
field undergoes diffraction. As observed from the S frame, thereafter
referred to as laboratory frame, the S′ frame is moving with a constant
velocity v = x̂v, x̂ being a unit vector in the x direction. We assume
that the frames S and S′ coincide at the moments t = t′ = 0. The
screen has the form of the perfectly conducting half-plane, defined in
S′ frame by x′ ≤ 0, −∞ < y′ < ∞ and z′ = 0. It is at rest in S′, and
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it is moving with the velocity v in S.
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Figure 1. Geometry of the problem. Coordinates in S and S′ frames
of reference.

Let a plane EM pulse with its envelope described by a Dirac
function be propagating perpendicularly to the screen edge. In the
S frame it satisfies the Maxwell equations

∇× E = −∂B
∂t

, ∇× cB =
1
c

∂E
∂t

, (1)

where all fields involved are independent of the y-coordinate. Thus
the problem is 2-dimensional and it can be decomposed into two
independent problems for E -field, and H -field, respectively [11], where
the particular fields are given by:
for the E -field,

Ei = ŷ ui, Bi = −
∫ t

−∞
∇× Ei dτ = ŷ ×

∫ t

−∞
∇ui dτ, (2a)

for the H -field,

cBi = ŷ ui, Ei = c

∫ t

−∞
∇× cBi dτ = −ŷ × c

∫ t

−∞
∇ui dτ, (2b)

and ui = ui(x, z). Thus to obtain the total field corresponding to an
excitation field (Ei, Bi) with a particular polarization, one needs to
single out its components parallel to the edge Ei

y and Bi
y. Then the

corresponding scattering problems for E - and H -fields should be solved
and their solutions added together.



56 Ciarkowski

In this paper we assume that

ui = δ

(
t − k0 · r

c

)
, (3)

where δ is the Dirac delta function, r = (x, y, z) and k0 =
(− cos θ, 0,− sin θ), θ being the angle measured between the x axis and
the direction from which the pulse propagates. With the substitution
(3) the formula (2a) reduces to

Ei
⊥ = ŷ ui, cBi

‖ = x̂ sin θ ui, cBi
⊥ = −ẑ cos θ ui (4a)

and similarly, the formula (2b) simplifies to

cBi
⊥ = ŷ ui, Ei

‖ = −x̂ sin θ ui, Ei
⊥ = ẑ cos θ ui. (4b)

Here, ⊥ or ‖ symbols are traditionally used to denote field components
that are perpendicular or parallel to the direction of the screen motion,
respectively.

Our goal is to find the total fields in E -field, and H -field case, that
satisfy the equations (1) and the boundary condition

ẑ × E = 0 (5)

of vanishing of the tangential component of the electric field on the
moving half-plane surface.

3. FIELDS IN THE MOVING FRAME

The first step in solving this scattering problem is to Lorentz transform
the source field from the S frame to the S′ frame. In our case the
transformation formulas take the following form for the fields

E
′
‖ = E‖, cB

′
‖ = cB‖,

E
′
⊥ = γ(E⊥ + β × cB⊥), cB

′
⊥ = γ(cB⊥ − β × E⊥), (6)

and for the coordinates

x′ = γ(x − βct), y′ = y, z′ = z, ct′ = γ(ct − βx). (7)

Here,

β = x̂ β, β = v/c, γ = 1/
√

1 − β2. (8)
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Upon this transformation the source field in S′ frame becomes:
for the E -field,

Ei′
⊥ = ŷ′ ui′, cBi′

‖ = x̂′ sin θ′ ui′, cBi′
⊥ = −ẑ′ cos θ′ ui′, (9a)

and for the H -field,

cBi′
⊥ = ŷ′ ui′, Ei′

‖ = −x̂′ sin θ′ ui′, Ei′
⊥ = ẑ′ cos θ′ ui′, (9b)

where,

ui′ = δ

(
t′ − k′

0 · r′
c

)
, (10)

and

k′
0 = (− cos θ′, 0,− sin θ′), cos θ′ =

β + cos θ

1 + β cos θ
, sin θ′ =

sin θ

γ(1 + β cos θ)
.

(11)

Here, we took advantage of δ(ax) = δ(x)/a for a > 0.
Comparison of (9a) through (10) with (4a), (4b) and (3) shows

that the source field in the primed frame has a similar form as in the
laboratory frame, except that the arguments in functions that describe
the field are suitably modified.

In the second step we Fourier transform the source field in the S′

frame to the frequency domain, and thus obtain for the E -field,

Ẽ
i′
(r′, ω′) =

∫ ∞

−∞
Ei′(r, τ)eiωτdτ = ŷe−ik′·r′ , (12a)

and for the H -field,

B̃
i′
(r′, ω′) = ŷe−ik′·r′ . (12b)

Here,

k′ = k′
0k

′, k′ =
ω′

c
. (13)

The fields Ei′ and Bi′ satisfy the wave equation, the corresponding
fields Ẽ

i′
and B̃

i′
satisfy the Helmholtz equation

∇2

{
Ẽ

′

B̃
′

}
+ k′2

{
Ẽ

′

B̃
′

}
= 0. (14)
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Thus the original scattering problem in the S′ frame is reduced to
corresponding problem for the Helmholtz equation, and since the
problem is 2D, it can be formulated in terms of Ẽy′ in the case of
E -field, and in terms of B̃y′ in the case of H -field. The remaining
components of the EM field can be found from the Maxwell equations.
Moreover, in the case of E -field the boundary condition (5) on the
half-plane simplifies to the Dirichlet condition for Ẽy′ , in the case of
H -field it reduces to the Neuman condition for B̃y′ .

The solution to the boundary value problem for the Helmholtz
equation is well known and was first obtained by Sommerfeld. For the
geometry used in this paper the resulting scattered field is given by:

ũ′ = Ẽy′ = −
√

k′ + ξ0

i2π

∫
C

ei(−ξx′+Γ|z′|)
√

k′ + ξ (ξ − ξ0)
dξ (15a)

for E -field, and

ũ′ = B̃y′ = sign(z′)
√

k′ − ξ0

i2π

∫
C

ei(−ξx′+Γ|z′|)
√

k′ − ξ (ξ − ξ0)
dξ (15b)

for H -field. Here, Γ =
√

k′2 − ξ2, ImΓ > 0, ξ0 = k′ cos θ′, and the
contour C in the complex ξ-plane is running along the line Im ξ = 0
with indentations above ξ = −k′ and below ξ = k′ and ξ = ξ0. The
representation (15b) is given in [12], and the representation (15a) can
be derived by following the technique described in [12].

Notice, that for x′ < 0 and z′ = 0 the integration contour C can be
closed in the upper ξ-half-plane by a semi-circle of a radius tending to
infinity. For E -field it follows from (15a) and from the residue theorem
that ũ′ = − exp (−ik′ξ0x), and thus the sum of the scattered (15a) and
source (12a) electric field vanishes on the screen surface. For H -field,
du′/dz′ = i

√
k′2 − ξ0

2 = ik′ sin θ′ on x′ < 0 and z′ = 0, where u′ is
defined by (15b). This cancels out the result of differentiation of (12b)
with respect to z′. Thus for H -field the tangential total electric field
also vanishes on the screen surface, as it was expected.

The fields (15a) and (15b) should now be converted to the time
domain. Their direct inverse Fourier transformation to the time
domain is not an easy task. Therefore we shall resort to a technique
offered by Felsen [7].

The outcome of the Felsen technique can be formulated as follows:
assume the field in the frequency domain is expressed as the contour
integral

G(r, rs;ω) =
∫

P
Q(r, rs;w)ei ω

c
γ(r,rs;w)dw, (16)
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where P is the integration path from −a+ i∞ to a− i∞, 0 < a < π/2,
symmetrical about w = 0 and r = rs are the source coordinates. The
functions Q and γ are independent of ω, iQ(r, rs;w) is real for real w,
and γ(r, rs;w) is an even function of w and it is real for real w.

Then the transient field due to Dirac delta excitation is given by

G(r, rs; t) = −H

(
t − D

c

)
2c

Re [iQ(r, rs;−iβ)}
(d/dβ)γ(r, rs;−iβ)

, (17)

where D = γ(r, rs; 0) and β is defined implicitly by

ct = γ(r, rs;−iβ). (18)

To facilitate the analysis we introduce the cylindrical coordinates
(ρ′, φ′, y′), which are related to the Cartesian coordinates via

ρ′ =
√

x′2 + z′2, tanφ′ = z′/x′, and η = sign(z′)π − φ′, −π < η < π.

With the change of integration variable defined by ξ = k′ cos α and
Γ(ξ) = sign(z′)k′ sinα (comp. [13]) the integrals simplify to:

ũ′ =
i

4π

∫
P ′

z

(
1

sin α+θ′
2

+
1

sin α−θ′
2

)
eik′ρ′ cos (α−η) dα, (19a)

for E -field, and

ũ′ =
i

4π

∫
P ′

z

(
1

sin α+θ′
2

− 1
sin α−θ′

2

)
eik′ρ′ cos (α−η) dα, (19b)

for H -field, where, depending on whether z′ > 0 or z′ < 0, the contour
P ′

z in the α-complex plane is running from π − i∞ to π, then from π
to 0 with an indentation above the pole at θ′, and from 0 to i∞, or
from −π + i∞ to −π, then from −π to 0 with an indentation below
the pole at θ′, and from 0 to −i∞, respectively.

By making a proper account of the residue at α = θ′ the integral
representation (19a) can be equivalently written down as

ũ′ = −sign(z′)
i

4π

∫
P

(
1

sin α+η+θ′
2

+
1

sin α+η−θ′
2

)
eik′ρ′ cos α dα

− H(θ′ − |η|) eik′ρ′ cos (θ′−|η|),

(20a)
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and similarly for the representation (19b),

ũ′ = −sign(z′)
i

4π

∫
P

(
1

sin α+η+θ′
2

− 1

sin α+η−θ′
2

)
eik′ρ′ cos α dα

− sign(z′)H(θ′ − |η|) eik′ρ′ cos (θ′−|η|),

(20b)

where the contour P is the same as in (16).
These representations are now back transformed to the time

domain. The inverse Fourier transform of the residue contributions
is

1
2π

∫ ∞

−∞
e−iω′t′e−ik′ρ′ cos (φ′±θ′) dω′ = δ

[
t′ +

ρ′

c
cos (φ′ ± θ′)

]
. (21)

The integrals in (20a) and (20b) have the form of (16) with w = α,
γ = ρ′ cos α and

Q = sign(z′)
i

4π

(
1

sin α+η+θ′
2

± 1

sin α+η−θ′
2

)
eik′ρ′ cos α,

and hence the Felsen method can be applied to them. Simple
calculation shows that the contribution from the integrals to the
transient scattered field is

ud′±(ρ′, φ′, t′) =

−
H

(
t′ − ρ′

c

) √
ρ′
c

√
2π

√
t′ − ρ′

c

(
cos φ′+θ′

2

t′ + ρ′
c cos (φ′ + θ′)

± cos φ′−θ′

2

t′ + ρ′
c cos (φ′ − θ′)

)
. (22)

Consequently, the expressions in the primed frame for appropriate
scattered field y′-components can be written down as

Ey′ = u′(ρ′, φ′, t′)

= −H(θ′ + φ′ − π)δ[t′ + t̃ cos (φ′ + θ′)]
−H(θ′ − φ′ − π)δ[t′ + t̃ cos (φ′ − θ′)]

−H(t′− t̃)
√

t̃
√

2π
√

t′− t̃

(
cos φ′+θ′

2

t′+ t̃ cos (φ′+θ′)
+

cos φ′−θ′

2

t′+ t̃ cos (φ′−θ′)

)
(23a)
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in the case of E -field, and

cBy′ = u′(ρ′, φ′, t′)

= H(θ′ + φ′ − π)δ[t′ + t̃ cos (φ′ + θ′)]
−H(θ′ − φ′ − π)δ[t′ + t̃ cos (φ′ − θ′)]

−H(t′− t̃)
√

t̃
√

2π
√

t′− t̃

(
cos φ′+θ′

2

t′+ t̃ cos (φ′+θ′)
− cos φ′−θ′

2

t′+ t̃ cos (φ′−θ′)

)
(23b)

in the case of H -field. Here, t̃ = ρ′/c.
The first term on the right hand side of (23a) and (23b) is

interpreted as the signal reflected from the screen, the second term
cancels out the source signal in its shadow region, and the third term
accounts for the diffraction of the source signal by the edge of the
screen.

In order to be able to perform the Lorentz transformation of the
scattered field from the moving to the laboratory frame we must find
all the remaining components of this field.

In the case of E -field, the magnetic induction is given by

B
′
= ŷ′ ×

∫ t′

−∞
∇u′ dτ = x̂′B

′
‖ + ẑ′B

′
⊥, (24)

where

B
′
‖ =

∫ t′

−∞

∂u′

∂z′
dτ, B

′
⊥ = −

∫ t′

−∞

∂u′

∂x′ dτ. (25)

If we consider the function

v′(ρ′, φ′, t′) =
H(t′ − t̃)

√
t̃

√
2π

√
t′ − t̃

cos φ′±θ′

2

t′ + t̃ cos (φ′ ± θ′)
, (26)

then straightforward calculation of ∇v′ shows that while both
derivatives as a whole are integrable functions, they contain
components that are non-integrable in arbitrarily small vicinity of
t′ = t̃. To overcome this difficulty we express ∂v′/∂t̃ by ∂v′/∂t′:

∂v′

∂t̃
= −∂v′

∂t′
+ v′

t′ − 2t̃ − t̃ cos (φ′ ± θ′)
2t̃[t′ + t̃ cos (φ′ ± θ′)]

, (27)

and after some calculations obtain

c

∫ t′

−∞

∂v′

∂z′
dτ = −v′ sinφ′ +

H(t′ − t̃)√
2t̃π

√
t′ − t̃ sin φ′∓θ′

2

t′ + t̃ cos (φ′ ± θ′)
(28)
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and

c

∫ t′

−∞

∂v′

∂x′ dτ = −v′ cos φ′ +
H(t′ − t̃)√

2t̃π

√
t′ − t̃ cos φ′∓θ′

2

t′ + t̃ cos (φ′ ± θ′)
. (29)

Denote for short

ux′±(ρ′, φ′, t′) =

−H(t′ − t̃)

√
t′ − t̃√
2t̃π

[
sin φ′−θ′

2

t′ + t̃ cos (φ′ + θ′)
± sin φ′+θ′

2

t′ + t̃ cos (φ′ − θ′)

]
, (30)

uz′±(ρ′, φ′, t′) =

−H(t′ − t̃)

√
t′ − t̃√
2t̃π

[
cos φ′−θ′

2

t′ + t̃ cos (φ′ + θ′)
± cos φ′+θ′

2

t′ + t̃ cos (φ′ − θ′)

]
(31)

and

up′±(ρ′, φ′, t′) = H(θ′ + φ′ − π)δ[t′ + t̃ cos (φ′ + θ′)]
±H(θ′ − φ′ − π)δ[t′ + t̃ cos (φ′ − θ′)]. (32)

Then on virtue of (23a), (25), (28) and (29) the magnetic induction
components in the case of the E -field are found to be

cB
′
‖ = x̂′(− sinφ′ · ud′+ − ux′+ + sin θ′ · up′−) (33)

and

cB
′
⊥ = ẑ′(cos φ′ · ud′+ + uz′+ + cos θ′ · up′+). (34)

In a similar manner we obtain for the H -field

E
′
‖ = x̂′(sinφ′ · ud′− + ux′− + sin θ′ · up′+) (35)

and

E
′
⊥ = ẑ′(− cos φ′ · ud′+ − uz′− + cos θ′ · up′−). (36)

4. FIELDS IN THE LABORATORY FRAME

Transformation of the fields from S′ frame to S frame is given by

E‖ = E
′
‖, cB‖ = cB

′
‖,

E⊥ = γ(E
′
⊥ − β × cB

′
⊥), cB⊥ = γ(cB

′
⊥ + β × E

′
⊥). (37)
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As a result, in the case of E -field, perpendicular to the direction of the
screen motion field components in the laboratory frame are

E⊥ = ŷγ[(1 + β cos φ′) · ud′+ + β · uz′+ − (1 − β cos θ′) · up′+], (38)

cB⊥ = ẑγ[(β + cos φ′) · ud′+ + uz′+ + (cos θ′ − β) · up′+], (39)

and in the case of H -field

cB⊥ = ŷγ[(1 + β cos φ′) · ud′− + β · uz′− + (1 − β cos θ′) · up′−], (40)

E⊥ = ẑγ[−(β + cos φ′) · ud′− − uz′− + (cos θ′ − β) · up′−]. (41)

These formulas, together with (33) and (35), represent the full
scattered field in the laboratory frame. To keep them in a compact form
they are expressed in primed coordinates. The change to unprimed
ones can be accomplished with the help of (7) and (11).

The total field can be characterized as follows:
(i) As in the stationary case this field consists of three wave species: the
source, the reflected and the diffracted field. The incident and reflected
fields are plane waves appearing only in their illuminated regions and
being nonzero only on their wave fronts. The diffracted signal does not
vanish behind its wave front. This front has the form of an expanding
circular cylinder surface ct = ρ, centered at the point x = 0, z = 0,
where the front of the source field has hit the screen edge. The fact that
the diffracted signal is nonzero behind its front is interpreted physically
([14]) as a result of field contributions from distant parts of the edge,
and is characteristic of 2D problems. On its front the diffracted wave
has an algebraic singularity.
(ii) The boundary condition on the screen is satisfied separately by the
sum of the incident and reflected signal, and by the diffracted signal
itself.
(iii) Unlike the stationary case, the shadow boundaries of the source
and the reflected pulses are not parallel to the directions of their
propagation.These boundaries are given by (comp. [3])

z

x − vt
= ± tan θ

1

1 + β
cos θ

. (42)

The factor multiplying tan θ introduces the rotation of a shadow
boundary towards the negative x half-axis. As a result, the illuminated
and shadow regions are modified as compared to the stationary case
(see Fig. 2).
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Figure 2. Wavefronts of incident, reflected and diffracted pulses due
to scattering by the moving half-plane.

5. THE CASE OF MODERATE AND SMALL VELOCITY
V

In most, if not in all applications, the velocity of a scattering object
is much smaller than the velocity of light, i.e. β << 1. Under
this assumption our field description in the laboratory frame can be
significantly simplified by expanding appropriate formulas in powers
of β and retaining only linear part of the expansion. In this procedure
one should keep in mind that βct = vt appearing in x′ need not be
small as compared to x.

Thus we find

x′ = x − vt + O(β2), t′ = t − β
x

c
+ O(β2), ρ′ = ρ̄ + O(β2), (43)

where ρ̄ =
√

(x − vt)2 + z2,

cos θ′ = cos θ + β sin2 θ + O(β2), sin θ′ = sin θ − β sin θ cos θ + O(β2),
(44)

and

cos φ′ = (x − vt)/ρ̄ + O(β2), sinφ′ = z/ρ̄ + O(β2). (45)
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Let us introduce the angle φ̄ measured between the point (x, z), the
edge of the screen, and the semi-axis x, for which †

cos φ̄ = (x − vt)/ρ̄, and sin φ̄ = z/ρ̄. (46)

Then by (44) and (45)

cos (φ′ ± θ′) = cos (φ̄ ± θ) ± β sin θ sin (φ̄ ± θ) + O(β2), (47)

and since

cos (w + ε) = cos w − ε sinw + O(ε2), as ε → 0,

we have

cos (φ′ ± θ′) = cos (φ̄ ± θ ∓ β sin θ) + O(β2). (48)

Hence

φ′ ± θ′ ≈ φ̄ ± θ ∓ β sin θ. (49)

The formulas (43) through (49) give simple approximate transforma-
tions of the variables from the primed to the laboratory frame.

By using these formulas in (38) and (40) we arrive at the following
approximate representations for the transverse electric and magnetic
induction fields in E and H case{
E⊥
cB⊥

}
=−ŷ

{
c
H(ct−ρ̄)√

2π

[√
ρ̄

ct−ρ̄
+β

(
xρ̄

2(ct−ρ̄)3/2
+

x−vt√
ρ̄
√

ct−ρ̄
+

√
ct−ρ̄

ρ̄

)]

×
(

cos [(φ̄−θ+β sin θ)/2]
ct−βx+ρ̄ cos (φ̄−θ+β sin θ)

± cos [(φ̄+θ−β sin θ)/2]
ct−βx+ρ̄ cos (φ̄+θ−β sin θ)

)

+(1−β cos θ)
[
H(θ−φ̄−β sin θ−π)δ[ct−βx+ρ̄ cos (φ̄−θ+β sin θ)]

±H(φ̄ + θ − β sin θ − π)δ[ct − βx + ρ̄ cos (φ̄ + θ − β sin θ)]
]}

,
(50)

respectively.
The remaining field components can be found by using the same

substitutions in (33), (35), (39) and (41).
† ρ̄, φ̄ and z form a cylindrical coordinate system in the laboratory frame S with its origin
at the half-plane edge.
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6. CONCLUSIONS

In this paper 2D problem of EM plane pulse diffraction by a moving
half-plane has been considered. It was assumed that the half-plane is
perfectly conducting and the surrounding medium is non-dispersive.
The total fieeld has been constructed and its simplification was found
for the case where the velocity of the screen is significantly smaller
than the velocity of light. The results of this work can be exploited
in solving a similar problem, where the source pulse has an envelope
different from the Dirac function.
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