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Abstract—This paper proposes an approximate space-time-frequency
field representation for directive Ultra-wideband antennas useful to
be introduced into a system-level evaluation tool. Based on the
observation that the very near field collected on a plane close to
the antenna exhibits a compact support, such a field is processed in
the time domain by the two-dimensional Hermite transform. This
approach permits to simultaneously express the antenna impulse
response and the transfer function by semi-analytical formulas. The
theory is demonstrated by numerical examples which highlights that
good representations of complex antennas can be achieved by a small
set of associate Hermite functions.

1. INTRODUCTION

Recent advances in Ultra -wideband (UWB) systems and applications
[1, 23] are producing renewed interest in the development and modeling
of impulse-like radiating antennas. Although modern numerical tools
permit to achieve a detailed fullwave analysis of the antenna in
both the time and the frequency domains [24], it is emerging the
need of smart space-time-frequency representations able to describe
the complex antenna dynamics by a small set of parameters. This
topic is of particular relevance when the antenna description has to
be introduced into a system-level evaluation tool which requires the
application of ray tracing for the modeling of indoor propagation
or the antenna interaction with any other kind of scatterer. In
previous papers [2, 3] the authors have proposed space-time-frequency
interpolating functions for the efficient representation of the antenna
impulse response or transfer function in the case of aperture radiators
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such as slots, open-ended waveguides and horns of rectangular and
circular shapes. The waveguide eigenvectors are used as space-
varying basis functions for aperture field representation, while the time
dependence is interpolated over a set of complex exponentials. For
antennas of more general shapes, such as UWB dipoles, TEM horn and
non canonical-aperture horns [24, 25], different kinds of entire-domain
basis functions need to be considered.

This paper addresses a compact UWB field representation
employing the two-dimensional Associate Hermite Functions (AHF2).
This base has been already introduced many years ago for the
modeling of optical resonators and beam-waveguides [4–6] and then
applied for radiative problems in the quasi-optical region for the
analysis of hexagonal and diagonal horns [7, 8] and in the microwave
region for the frequency-domain modeling of large apertures [9]
exploiting the possibility to approximately calculate the Fresnel and
Fraunhofer radiation by simple formulas. In [10] one-dimensional
Associate Hermite Functions are used to characterize the modes
of dielectric waveguides. More recently [11] one-dimensional AH
Functions have applied to extrapolate both time and frequency domain
electromagnetic responses of structures using early-time and low-
frequency simulation data. Further interesting multiscale applications
can be found in [12] where the Hermite formalism was adopted for
image coding and computer visual systems.

Such a base is here applied to time-varying electromagnetic
images, by means of an automatic a-priori choice of the most critical
parameters such as the scaling factors. The model is useful for directive
antennas, but it is much more general than the model involving an
aperture on an infinite screen.

After the basic formulation for impulse response and transfer
function of UWB antennas in Section 2, the basic theory of the near-
field processing is developed in Section 3 followed by some computation
issues in Section 4 addressing the automatic choice of the relevant
processing parameters. The method is finally demonstrated with some
examples in Section 5.

2. STATEMENT OF THE PROBLEM

The antenna impulse response hT (r̂, τ), e.g., the transmitting-mode
effective height is formally obtained as the Radon transform of the
antenna current corresponding to a feeding Dirac voltage pulse [14]. In
the frequency domain the transfer function H(r̂, ω), which is directly
related to the realized gain (and hence includes the antenna-source
mismatch), is the Fourier transform of the time domain effective
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Figure 1. The relevant geometry for the Hermite processing of a
time-varying near field.

height. An approximation, commonly adopted in the measurement
context, replaces the knowledge of the antenna current with the field
on a plane, say π0 of normal vector ẑ, placed at close proximity
to the antenna (Fig. 1). Relevant far field functions, such as the
impulse response and the transfer function (proportional to the far
field radiated by the antenna, sourced by an impulsive excitation, in the
time- and frequency-domain respectively), are then obtained by a two-
dimensional Radon transform (time-domain) [15] or spectral Fourier
transform (frequency domain) as

hT (r̂, τ) = − 2
η0

r̂ ×
∫∫
π0

Eδ
0

(
ρ, τ +

r̂ · ρ
c

)
ds× ẑ ∗ δ(1)(τ) (1)

H(r̂, ω) = −2
jω

η0
r̂ ×

∫∫
π0

Ẽδ
0(ρ, ω)ej ω

c
r̂·ρds× ẑ (2)

where ‘*’ means convolution, the symbol ‘tilde’ denotes the Fourier
transform between t → ω, τ = t − r/c, domains, δ(1)(τ) is the first-
derivative operator, Eδ

0(ρ, t) with ρ = xx̂, yŷ ∈ π0, is the time-
varying electric tangential field on π0 in the front of the antenna
corresponding to a Dirac voltage pulse entering the antenna terminals.
The latter function may be generally obtained by means of any time
domain fullwave solver or by measurements. Since the antenna current
is replaced by the field on a plane in front of the antenna, such
a representation obviously represents the antenna dynamics only in
z > 0 (or z < 0) half space and it is really accurate only for directive
antennas. Further approximations truncate the integration within a
finite region of π0 in the front of the antenna.
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Equations (1) and (2) need to be generally computed numerically
except for very simple antenna geometries, involving a lengthy and
time-consuming process. The computation requires the application of
a local method, such as the Finite-Difference Time-Domain (FDTD)
[16], to calculate the aperture field when the antenna is sourced by
a broadband test signal, since the Dirac pulse is not suitable as
input signal for numerical codes. The corresponding field on the π0

plane needs to be stored within the whole transient and numerical
deconvolution is then applied to each radiating pixel to calculate Eδ

0.
Finally, the impulse response and transfer functions are obtained by
numerical evaluation of surface integral in (1) and (2) which has to be
repeated at any required time (frequency) and observation direction
because of the coupling between angular and spatial variables. A
complete broadband antenna characterization over the whole radiating
angle is therefore a time-consuming computational task.

Nevertheless the authors have shown in previous papers how such
integrals can be calculated analytically provided that the near field
is interpolated over proper time-independent functions having known
Fourier transform. The problem was solved for aperture-radiating
antennas of canonical shapes where the interpolating functions can be
chosen as the eigenvectors of rectangular or circular waveguides having
the same cross-section of the aperture. This representation does not fit
other kind of antennas and hence more general interpolating functions
need to be introduced.

3. HERMITE PROCESSING OF THE TIME-VARYING
FIELD

Provided that the plane π0 (Fig. 1) is placed at a close proximity to
the antenna, the electric (or also the magnetic) field will be mostly
concentrated within a small region of π0. In other words we can
suppose that the near field exhibits a compact support on π0. Under
this hypothesis, an efficient choice for the interpolating basis is the two-
dimensional Associate Hermite Functions (hereafter denoted as AHF2)
defined as

hmn(x, y, wx, wy) =

1
√
πwxwy

√
2m+nm!n!

Hm( x
wx

)Hn( y
wy

)e
−( x2

2w2
x

+ y2

2w2
y

)
(3)

Here Hm(ξ) is the mth Hermite polynomial. AHF2s (Fig. 2) form
a scalar orthonormal basis, they are spatially separable and show a
compact support around (x = 0, y = 0) which can be controlled by
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the scaling factors {wx, wy}. Even functions, such as h00, are useful
to represent the co-polar field component, while the cross-polar is
modeled by odd functions, for instance h11. As the functions order
(n,m) increases, the resulting support enlarges. The extreme values
of a Hermite function exhibits near equal amplitudes which is a rather
useful feature to model close-to-the-edge field singularities and large
radiating objects such as arrays.

Figure 2. Some two-dimensional Associate Hermite functions having
equal scaling factors wx = wy.

Beside this choice, also the Hermite Rodriguez functions [17] could
be considered for the interpolation of compact-support images, but it
has been verified that the corresponding interpolation converges not
uniformly and slower [12] than the AHF2 and that the interpolation
accuracy is more sensible to the scale factor than in the case of AHF2.

The AHF2 share the same properties of the more conventional
1D associate Hermite functions and, in particular they are isomorphic
with their Fourier transform, e.g.,

+∞∫
−∞

+∞∫
−∞

hmn(x, y, wx, wy)e−j2π(ξx+ηy)dxdy =

(−j)m+nhmn(ξ, η, 1
2πwx

, 1
2πwy

) (4)

The time-varying coefficients gmn(τ) = gx,mn(τ)x̂ + gy,mn(τ)ŷ for
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the near field approximation

Eδ
0(x, y, t) 


N∑
m,n=0

gmn(τ)hmn(x, y, wx, wy) (5)

are formally defined as the two-dimensional Hermite transform of the
impulsive aperture field on π0

gmn(τ) =
∫∫

π0

Eδ
0(x, y, τ)hmn(x, y, wx, wy)dxdy (6)

3.1. Transfer Function

According to expansion in (5), and thanks to the isomorphism in (4),
it is easy to show that the antenna transfer function is given by

HT (r̂, ω) 
 −2
jω

η0
r̂ ×

N∑
m,n=0

g̃mn(ω)Fmn(kx, ky) × ẑ (7)

The plane wave spectrum of the mnth AHF2 is

Fmn(kx, ky) = (−j)m+nhmn(− kx

2π
,− ky

2π
,

1
2πwx

,
1

2πwy
) (8)

with kx = ω
c r̂ · x̂ and ky = ω

c r̂ · ŷ.
Only the portion of Fmn(kx, ky) in the visible space |kx,y| ≤ ω/c

will contribute to the radiated fields. Fig. 3 shows some examples
of Fmn plots in spherical coordinates at some frequencies. Increase
in the order (m,n) yields a larger number of lobes, while increasing
the frequency forces the lobes to move toward the broadside. At the
purpose to regenerate the whole frequency-domain antenna dynamics,
the expansion coefficients, {g̃mn(ω)}, are therefore the only data to
store, rather than the whole transient near field. Moreover, as it will
be recalled in the next paragraph, a further data compression can be
achieved by pole-residue processing.

3.2. Impulse Response

Denoting with Sπ0 the compact support of Eδ
0(x, y, t) on the π0 plane,

for instance a circle of ρmax radius, the time-domain effective height
can be approximated [15] for signals with maximum frequency fmax ≤
ρmax/c in terms of the plane-wave spectrum of each AHF2 pattern
evaluated at the singular values of its own time-variant expansion
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Figure 3. Examples of the k−domain AHF2 functions
|hmn(− kx

2π ,−
ky

2π ,
1

2πwx
, 1

2πwy
)| of different orders plotted at some fre-

quencies in angular coordinates (θ, φ).

coefficients. Therefore, denoting for instance with {sx,mnk, gx,mnk}
the pole-residue signature of the gx,mn(τ) function, e.g., such that
gx,mn(τ) 


∑
k gx,mnke

sx,mnkτ , the x− component of the TD effective
height is given by

hT
x (r̂, τ) 
= −2

1
η0

r̂ ×

N∑
m,n=0

Kmn∑
k=0

Tx,mnkhmn(
jsx,mnk

2πc
rx,

jsx,mnk

2πc
ry,

1
2πwx

,
1

2πwy
)esx,mnkτ (9)

where Tx,mnk = (−j)m+nsx,mnkgx,mnk, and rx = r̂ · x̂ and ry = r̂ · ŷ.
The pole-residue processing has the additional advantage to produce
both time- and frequency-models of the UWB antenna by the same set
of data since g̃x,mn(ω) =

∑
k

gx,mnk

jω−sx,mnk
e−jω+sx,mnkz0/c.

4. COMPUTATIONAL ISSUES

Since the Dirac pulse is not suited as input signal for numerical tools,
a practically band-limited test signal vt(t), such as a Gaussian or
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derivated-Gaussian pulse, is considered for the computation of the
time-varying near field E0(x, y, t) on π0. Denoting with {vmn(t)} the
Hermite transform of E0 as in (6), the required {gmn(τ)} coefficients
of Eδ

0 are then obtained from {vmn(t)} by deconvolutions as explained
in [18] and in [15]. The pole-residue extraction can be executed by the
Matrix Pencil method [19].

A critical task in the field approximation over the AHF2 set is the
choice of the scaling factors {wx, wy} which generally depends on the
local scene context and strongly affects the expansion accuracy and
efficiency. According to the theory in [9], a good rule to optimize
the choice of the scale factor is that the radiated power of the
interpolated distribution best matches the radiated power of the real
field distribution. However this strategy is an a-posteriori one, since it
requires the knowledge of the whole near-field dynamic and therefore
it is not suitable to be incorporated into a time-domain solver for a
run-time execution. Instead, it is desirable an a-priori selection of the
scale factors which is related to the observable geometrical parameters,
such as the antenna size and the distance between the antenna and the
near-field observation plane. Since the support of Eδ

0 enlarges as
the π0 plane moves far from the antenna, at least in the near field, a
robust a-priori choice of the scaling factor requires to account for both
the antenna size and the distance z0 from the expansion plane. At
this purpose it is preliminarily defined an effective antenna footprint
Leff on π0 under the simplifying hypothesis of spherical-wave radiation
mechanism from the antenna edges (see Fig. 4).

Lma x

ELEL/2

∆L
Leff

z0

π0

Figure 4. Geometry for the definition of the antenna effective
footprint Leff on π0 according to a spherical radiation model from
the antenna edges. EL is the field amplitude on π0 at the projections
of the antenna boundary.

Denoting with ∆l 
 2z0 the distance on the π0 plane between
the projection of the antenna boundary and the point where the
spherical wave emerging from the antenna edges attenuates to one half
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its maximum amplitude, it is posed

Leff (z0) = Lmax + 4z0 (10)

It is here assumed that the scaling factor is a function of the sole
Leff . Among several options, it was experimentally found that a good
choice can be

wx = wy =
λmin

4
log

(
10

Leff

λmin

)
(11)

where λmin is the lowest frequency in the modeling. Under this
assumption the accuracy of the Hermite expansion is rather insensitive
to the position of the π0 plane as it will be shown in the Examples
Section.

The Hermite Transformation integrals in (6) theoretically extend
to infinity, however near-field data are available only within a finite
sub-domain of π0. Such a truncation of the observation domain yields
a limitation on the order of those AHF2s which can be retained in
the field interpolation since the support of each AHF2 is roughly
bounded by the first and the last roots of the corresponding Hermite
polynomial and enlarges along with the function order. The following
argument may be followed. An accurate strategy to numerically
compute the Hermite transform in (6) could be the N -points Gauss-
Hermite integration rule [21]

+∞∫
−∞

f(u)e−u2
du 


N∑
j=1

Ajf
(
u

(N)
j

)
(12)

where {u(N)
j } are the roots of the Nth order Hermite polynomial and

{Aj} are proper integration weights. By applying this formula to (6),
and accounting for the presence of scaling factors, it is easy to show
that

gmn(τ) 

M∑
i=1

N∑
j=1

AiAj

[
Eδ

0hmne
x2

2w2
x

+ y2

2w2
y

]
x=

√
2wxu

(M)
i

y=
√

2wyu
(N)
j

(13)

In order to apply the above formula to a truncated L0 × L0 domain,
(−L0

2 ≤ x, y ≤ L0
2 ), all the required roots need to lay within that

region. Therefore the highest-order, N and M , of AHF2s are such
that the largest roots of the corresponding Hermite polynomials are
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constrained to

u
(M)
i ≤ L0

2
√

2wx

u
(N)
j ≤ L0

2
√

2wy

(14)
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Figure 5. Largest roots u(N)
N of the Hermite polynomials HN (u).

Figure 5 shows the largest roots of the first N = 50 orders Hermite
polynomials. Due to the non linearity of the curve, the number of
Hermite functions to be retained in the near field interpolation is as
more sensible to the size of the observation region as this becomes
larger (e.g., roughly for u

(M)
N > 5). In other words, the roots come

closer (approach) as the order of Hermite function increases.
Another well investigated consequence [20] of the observation

region truncation is that the far field data are meaningful only within
the solid angle formed by the edges of the antenna and the edge of the
finite observation region. By parametrizing the size L0 of near-field
data domain on π0 as L0 = Leff + 2pz0 (p is an integer number), the
antenna transfer function HT (r̂, ω) will be considered only for angles
−θ0 ≤ θ ≤ θ0 where θ0 is such that tan θ0 = L0−Lmax

2z0
= (p + 2).

From this formula it is possible to select the size of the numerical
computation region in order to obtain the desired angular domain of
the transfer function.
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5. NUMERICAL EXAMPLES

The applicability and the accuracy of the method are now investigated
with reference to two examples with different angular spreading of the
radiated field, e.g., an aperture-type antenna, and an UWB planar
dipole-like antenna.

In both the examples, time-varying relevant fields for the
2D Hermite transform are computed by a FDTD tool. Far-field
solutions obtained with the proposed model will be compared with
a reference solution obtained by an independent FDTD simulation
whose computational domain is large enough to include some field test
points in front of the π0 plane. Differences among reference fields (E1)
and reconstructed fields (E2) by the Associate Hermite functions are
discussed according to the normalized root mean square (r.m.s.) error
ε(E1, E2) =

√
||E1 − E2‖2/‖E1‖2, (with ‖ · ‖2 denoting the L2 norm

respect to (x, y) coordinates).

5.1. Aperture-radiating Antenna

A reference ultra-wideband ridged horn (CRH) antenna having
(4 GHz–10 GHz) band, already used as a test case in previous papers
[3], is here considered.

The test signal to stimulate the antenna response in the required
band is a Gaussian pulse vt(t) = V0 exp[−(t−τ0)2

2T 2
0

] with parameters,
V0 = 1V, T0 = 35 ps and τ0 = 200 ps. The π0 plane is placed at a
distance z0 = 2.1 cm from the horn aperture (corresponding to half a
wavelength in the mid-band). The maximum size of the aperture is
Lmax = 10.5 cm and therefore the effective aperture footprint on π0

computed by (10) is Leff 
 19 cm. The observation region on π0, e.g.,
the domain where the antenna near-field will be processed, is a square
of side L0 
 2Lmax. Under this choice, the transfer function could be
virtually computed within the angular domain |θ| < 68◦.

The near field energy, e.g., the L2 norm respect to time, e(x, y) =
‖E(·, t)‖2, is expected to be well concentrated over the expansion plane
π0 right in front of the aperture (Fig. 6).

The scaling factors for the Hermite processing are chosen
according to (11) as wx = wy = 3.1 cm. In this case it is shown
in Fig. 7 that the relative mean square error of the reconstructed
field E′

0(x, y, t) 

∑N

m,n=0 vmn(τ)hmn(x, y, wx, wy) compared with the
original field E0(x, y, t) is rather insensitive to the position z0 of the
observation plane. The authors experienced that the same condition
roughly holds also for different kinds of antennas.
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Figure 6. Normalized energy e(x, y) = ‖E(·, t)‖2 radiated by the
circular ridged horn on the plane π0 placed at distance z0 = 2.1 cm from
the antenna aperture. The circle indicates the antenna rim projection
over π0.
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Figure 7. CRH antenna: reconstruction r.m.s. error
ε(E0,y,

∑
m,n vy,mnhmn,y), at time t = 0.75 ns vs. the scaling factor

wx = wy = w for different distances z0 of the observation plane to the
antenna and therefore of the effective antenna footprint Leff on π0. In
this case λmin = 3 cm.
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Figure 8. CRH antenna: energy spectrum of the Hermite coefficients
for the field interpolation on π0.

The energy spectrum ‖vx,mn (τ)‖2 of the Hermite coefficient for
E0x and E0y components of orders n,m ≤ 10 (Fig. 8) shows a
chessboard-like distribution, interleaved among x- and y-components,
with a high localization of the mostly excited AHF2s in the lower
part of the band (small n and m). In particular, h00 and h11 functions
dominate for y- (co-polar) and x-components (cross-polar) respectively.
By considerations in Section 4 (see Equation (14)) the near-field
domain size is such that 2.35(u(6)

6 ) < L0

2
√

2wx
< 2.65(u(7)

7 ) and therefore
the highest order of AHF2 to be considered is roughly N = M = 7.

According to this expansion, the transient near field on π0 is
reconstructed with good accuracy both in the early transient and in
the signals tail as shown in Fig. 9.

The angle-frequency transfer function plot, as computed by the
proposed Hermite processing at φ = 90◦ plane is presented in Fig. 10.
The high-pass nature of the antenna is clearly evident as well as the
nearly constant group delay at the boresight which indicates a reduced
distortion of the transmitted pulse.

Values of transfer function at boresight observation and off
the boresight have been further used to regenerate the far field
dynamics corresponding to ṽt(ω) = F [vt(t)] input function according
to Ẽ(r, ω) ∝ ṽt(ω)HT (r̂, ω) ejkr

r . Results in Fig. 11 are compared with
reference solutions and it can be appreciated a good reconstruction
of the field even when the only h00 and h20 functions are considered
on the boresight observation, and the h00 plus h11 for off- boresight
signals.
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5.2. UWB Dipole

An ultra-wideband planar dipole with elliptical branches (Agrawall
dipole [22]) is placed in front of a finite reflecting plane (Fig. 12) with
the purpose to concentrate the radiation mainly in z > 0 half space.

The antenna is sourced by a Gaussian pulse with parameters
T0 = 24 ps and τ0 = 130 ps. This kind of geometry provides a hard
test for the AHF2 interpolation since, unlike the case of aperture-like
antennas, the radiated near-field sensibly spreads on the π0 plane as the
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Figure 11. CRH antenna: comparison between reference solution and
AHF2 reconstructions for the far-field data (normalized units) at the
boresight, P1 = (r1 = 15 cm, θ = 0◦, φ = 0◦), and off-the-boresight,
P2 = (r2 = 48.8 cm, θ = 18◦, φ = 45◦).

z

x

y

dxLyL

Figure 12. Agrawall dipole: geometry size: Lx = 5 cm, Ly = 4.6 cm,
d = 2.4 cm. Reflecting panel size: 20 × 20 cm2.
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Figure 13. Agrawall dipole: near field energy on the plane π0 at a
distance z0 = 18 mm from the antenna when it is sourced by a gaussian
pulse with parameters To = 24 ps and τ0 = 130 ps.

time goes on. Departing interference fringes therefore produce a null
in front of the antenna gap at some time intervals. As a consequence,
it is expected that the radiated energy is less concentrated in front of
the antenna (see Fig. 13), the field support on π0 will enlarge along
with the time and a big set of AHF2 could be involved in the field
processing.

By placing a square observation plane π0, of size L0 = 40 cm,
at a distance z0 = 1.8 cm from the antenna and choosing equal
scaling factors wx = wy = 2.46 cm, the maximum order of the AHF2
which could be computed by the Hermite Transform (according to
Equation (14)) will be N = M = 22. Fig. 14 shows the energy
spectrum of the first n,m < 15 time-variant interpolation coefficients.
As expected, the diagram is less concentrated than in the CRH example
and therefore a larger number of terms will be required for an accurate
reconstruction of the antenna dynamics. Snapshots of the near-field,
interpolated on the π0 plane by the Hermite base (Fig. 15), show a good
agreement with the original data even when the radiated waveforms
move far from the domain centre. Some difficulties begin to arise when
the wavefront approaches the boundary of the observation plane.

The far-field (Fig. 16) is reconstructed, as in the previous example,
with good accuracy up to 4 GHz, (e.g., in the antenna band), after
which the reconstructed field presents some discrepancies with the
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Figure 14. Agrawall dipole: energy spectrum of the Hermite
coefficients for near-field interpolation.

Figure 15. Agrawall dipole: some snapshots of the near field
(|Ex(x, y, t)| component) on the observation plane π0 placed at a
distance z0 = 18 mm from the antenna as computed by FDTD (upper
line) and interpolated by AHF2s (lower line).

reference data.
The time-domain effective height is computed according to (9) by

using the same data of the transfer function. It can be observed in
Fig. 17 an approximate second-order derivative behavior of the UWB
dipole, e.g., three distinct finite-width pulses with reversed polarity.
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Figure 16. Agrawall dipole: comparison between reference solution
and AHF2 reconstructions for the far field r|Eθ| at angles (θ = 0◦, φ =
0◦) -up- and (θ = 12◦, φ = 0◦) -down. Data in normalized units.
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Figure 17. Agrawall dipole: time-domain effective height (in
normalized units) at angles (θ = 0◦, φ = 0◦) -up- and (θ = 12◦, φ = 0◦)
-down- as computed by AHF2 processing.
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6. CONCLUSIONS

A new approximate compact space-time-frequency field representation
for moderately-directive UWB antennas has been presented. The use
of two-dimensional Associate Hermite functions permits to characterize
the time-varying electromagnetic dynamics of the antenna by a small
set of scalar data and to express the antenna impulse response and the
transfer function by semi-analytical formulas thanks to the Fourier
transform isomorphism of such a base. The number of AHF2s to
consider, and therefore of the data to store, depends on the antenna
size and on the spatial collimation of the radiated field. The Hermite
processing required to extract the interpolation coefficients can be
introduced into any existing TD code with an automatic selection
of the relevant parameters (scaling factor, effective antenna footprint,
orders of polynomials), and can be executed at run-time with a modest
increase in the computational effort.

The method is really efficient for aperture like-antennas, for which
it requires one or two AHF2s to reconstruct the radiated field with good
accuracy, but it is useful even for non so directive antennas although
a larger number of Hermite functions is needed.

The proposed processing could be applied for both data
compression and to define a general interface for the inclusion of the
antenna description into a ray-tracing working in the time as well in
the frequency domain.
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