DESIGN OF MICROSTRIP ARRAY ANTENNA BY USING ACTIVE ELEMENT PATTERN TECHNIQUE COMBINING WITH TAYLOR SYNTHESIS METHOD

Q.-Q. He and B.-Z. Wang

Institute of Applied Physics
University of Electronic Science and Technology of China
Chengdu 610054, China

Abstract—Active element pattern technique is applied for analyzing microstrip array, which divides a large array analysis problem as a superposition of various simplified small array problems and greatly reduces the computation burden. The effects of the mutual coupling and the surrounding array environment are rigorously taken into account in the proposed method. Based on the active element pattern technique, a low side lobe microstrip array is synthesized. The commercial full-wave simulation software, HFSS, is used to simulate the array as a whole and the efficiency of the proposed method is validated.

1. INTRODUCTION

Analysis and design of array antennas are complicated by the presence of mutual coupling in the array environment [1–7]. Direct analysis approaches for array antenna mounted on arbitrarily shaped platforms are typically based on either the method of moments (MoM) [8–12], finite element methods (FEM) [13], or finite difference time domain (FDTD) techniques [14,15]. In [16], a uniform theory of diffraction combining with numerical algorithm is used to calculate the mutual coupling between circular apertures on a doubly curved surface. In [17–19], an efficient and accurate hybrid method based on the combination of the method of moments with a special Green’s function is presented to analyze antenna and arrays. In [20], the effect of the mutual coupling between the array elements on the performance of the adaptive array antennas is investigated when the actual received voltages which include the mutual coupling are directly used to estimate the weight vector based on the adaptive algorithm. Furthermore, Zhao et al. [21]
use an efficiency-optimized scheme to design an optical phased array. Nie et al. [22] apply the integral equation combining with physical optics method to analyse the slot array enclosed in an electrically large radome. Unfortunately, these approaches are time-consuming, especially for arrays with complex elements or mounted on complex platforms.

Active element pattern technique [23, 24], which uses the measured or calculated patterns of individual elements in the array environment to calculate the pattern of the fully excited array, can often be employed when numerical techniques cannot. Of course, if it is possible to compute the active element patterns using a given technique, then the fully excited array can usually be analyzed using the same technique. However, active element pattern technique usually permits faster pattern calculations than other methods once the element pattern data are available. Therefore, active element pattern technique is often preferable to other techniques. Though the subject of mutual coupling is included in much of the array antenna literatures, array analysis method based on active element pattern is still few in recent years.

In this paper, we investigate microstrip arrays by using active element pattern technique and design a low side lobe microstrip array by applying the Taylor line source synthesis method. The effects of the mutual coupling and the surrounding array environment are rigorously taken into account in the proposed method. Compared with those numerical approaches mentioned above, the proposed method has the advantages of reduced computation burden and simplified implementation.

Figure 1. Geometry of a microstrip linear array of \(N \) elements.
2. FORMULATION

The active element pattern is defined as the radiation pattern of the array when one radiating element is driven and all others are terminated with matched loads. In order to illustrate the active element pattern technique, a microstrip linear array of \(N \) elements is used, as shown in Fig. 1. By the principle of superposition, the far field radiated by a fully excited array can be expressed using active element patterns as

\[
E_{\text{total}} = \sum_{n=1}^{N} I_n G_n^a(\theta, \varphi) e^{j k \hat{r} \cdot r_n} \tag{1}
\]

where \(I_n \) is the complex valued feed current applied to the \(n \)th element, \(G_n^a(\theta, \varphi) \) is the active element pattern of the \(n \)th element, \(\exp(j k \hat{r} \cdot r_n) \) is the spatial phase term, \(\hat{r} \) is the unit radial vector from the coordinate origin in the observation direction \((\theta, \varphi)\), and \(r_n \) is a position vector from the origin to the center of the \(n \)th element; boldface type indicates a vector quantity.

In the expression of (1), the coordinate vector of the \(n \)th element can be given by

\[
r_n \cdot \hat{r} = x_n \cos \varphi \sin \theta \tag{2}
\]

\[
x_n = \left(n - \frac{N + 1}{2} \right) d, \quad n = 1, 2, 3, \ldots, N \tag{3}
\]

where \(d \) is the distance between neighbor two elements.

Note that the sequence \(\{ G_n^a(\theta, \varphi) \} \) contains all of the mutual coupling effects associated with the array environment and the excitation of the element. Furthermore, the sequence \(\{ G_n^a(\theta, \varphi) \} \) also implies that the active element pattern depends on the position of the particular feed element in the array.

If the array is periodic and infinite, the active element patterns are identical for all elements in the array. If the array is large, the active element patterns can be seen as approximate identical for interior elements in the array. Therefore, the array elements can be divided into edge elements, interior elements, and adjacent edge elements, where the adjacent edge elements locate between edge elements and interior elements.

Thus, the far field of (1) can be divided into three parts as follows

\[
E_{\text{total}} = E_e(\theta, \varphi) + E_i(\theta, \varphi) + E_{ae}(\theta, \varphi) \tag{4}
\]

where \(E_e(\theta, \varphi) \) is the superposition of the active element patterns of all edge elements; \(E_i(\theta, \varphi) \) is the superposition of the active element
patterns of all interior elements; $E_{ae}(\theta, \varphi)$ is the superposition of the active element patterns of all adjacent edge elements; and

$$E_e(\theta, \varphi) = \sum_{s=1}^{N_e} I_s G_a^s(\theta, \varphi) e^{j\hat{r} \cdot r_s}$$ \hspace{1cm} (5)$$

$$E_i(\theta, \varphi) = G_{av}(\theta, \varphi) \sum_{l=1}^{N_i} I_l e^{j\hat{r} \cdot r_l}$$ \hspace{1cm} (6)$$

$$E_{ae}(\theta, \varphi) = \sum_{m=1}^{N_{ae}} I_m G_{ae}^m(\theta, \varphi) e^{j\hat{r} \cdot r_m}$$ \hspace{1cm} (7)$$

where N_e is the number of all edge elements, N_i is the number of all interior elements, and N_{ae} is the number of all adjacent edge elements.

Compared with the expression of (1), the active element pattern of interior element in (6) only needs to be calculated once by using a small array whereas the active element patterns of interior elements in (1) need to be calculated element-by-element in the whole array. Thus, the computation burden is reduced remarkably.

For certain applications, the far field of (4) with low side lobe levels (SLLs) should be provided to avoid electromagnetic interference. In order to obtain low SLLs, the Taylor line source method is considered [25]. In the expression of (4), the required current distribution can be presented as follows

$$I(x_n) = \frac{\lambda}{Nd} \left[1 + 2 \sum_{p=1}^{n-1} S(p, A, \bar{n}) \cos\left(2\pi p x_n \frac{\lambda}{Nd}\right) \right]$$ \hspace{1cm} (8)$$

where the parameter \bar{n} is a constant chosen by the designer and determines the number of pattern zeros that are modified from the sin x over x pattern. The coefficients $S(p, A, \bar{n})$ are the samples of Taylor line source pattern, and is given by

$$S(p, A, \bar{n}) = \frac{[\bar{n} - 1)!!]^2}{(\bar{n} - 1 + p)!((\bar{n} - 1) - p)!} \prod_{k=1}^{\bar{n}-1} \left[1 - \left(\frac{p}{\sqrt{\bar{n}^2 + (k-1/2)^2}} \right)^2 \right],$$ \hspace{1cm} \text{for} \ |p| < \bar{n} \hspace{1cm} (9)$$

where the parameter A is related to the maximum desired side lobe level R_0 by

$$A = \frac{1}{\pi} \cosh^{-1}(R_0)$$ \hspace{1cm} (10)$$
The scaling factor σ is determined by making the zero location, and it is given by

$$\sigma = \frac{\bar{n}}{\sqrt{A^2 + (n - 1/2)^2}}$$

(11)

3. ANALYSIS AND DESIGN OF A MICROSTRIP ARRAY

3.1. Laboratory Model

A microstrip linear array is used to test the active element pattern technique given above. The radiating elements are mounted on the surface of the dielectric substrate with a thickness of $h = 0.762 \text{mm}$ and a relative permittivity of $\varepsilon_r = 3$. Each radiating element is uniformly spaced from its neighbors by distances of $d = 0.51\lambda_0$ in the x-direction, where λ_0 is the free space wavelength corresponding to an operating frequency of 1.53 GHz.

A simple rectangle patch is selected as the radiating element, as shown in Fig. 2. In this design, the operating frequency is mainly determined from the rectangular patch dimensions and the feed position. According to [26], the length L of the rectangular patch is chosen to be 60.6 mm and the width W of the rectangular patch is chosen to be 55.5 mm. By moving the feed position along the x-axis, a resonant frequency can be obtained at feed position B. By moving the feed position along the y-axis, the other resonant frequency can be obtained at feed position A. Calculated and measured resonant frequencies are shown in Table 1. It is clear that a good agreement is obtained between calculated and measured results.

![Geometry of an array element for different feed positions.](image-url)
Table 1. The calculated and measured results.

<table>
<thead>
<tr>
<th>Position (mm)</th>
<th>Means</th>
<th>Resonant Frequency</th>
<th>Source of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Point A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 9.5)</td>
<td>Calculated</td>
<td>1.53 GHz</td>
<td>HFSS</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>1.54 GHz</td>
<td>Reference [26]</td>
</tr>
<tr>
<td>Feed Point B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9.6, 0)</td>
<td>Calculated</td>
<td>1.41 GHz</td>
<td>HFSS</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>1.42 GHz</td>
<td>Reference [26]</td>
</tr>
</tbody>
</table>

3.2. Analysis and Extraction of Active Element Patterns

The crucial problem of the active element pattern technique comes from the computation of the active element patterns, where different types of the active element patterns are extracted, based on the particular position of the feed element in the array. Fig. 3 gives the calculated active element patterns of the left edge element, where different numbers of array elements are used. It is obvious that the active element pattern of 4-element array is in agreement with that of 3-element array completely. Thus, the mutual coupling to the left edge element comes mainly from its neighbor right-side two elements. The active element pattern of the left edge element can be obtained by using a 1×3 small array.

Figure 3. Calculated active element patterns for left edge element.

Similarly, the mutual coupling to the right edge element comes mainly from its neighbor left-side two elements. Note that the radiating
direction of the left edge element is different from that of the right edge element because of the different location of the excited element in the array. Thus, the active element pattern of the right edge element needs to be extracted by using a 1×3 small array different from its left edge counterpart.

As for interior elements, in order to obtain the active element pattern accurately, we compute the small array of 3-element, 5-element, and 7-element, respectively. Obviously, the active element pattern of 5-element array is in agreement with that of 7-element array, as shown in Fig. 4. Thus, the active element pattern of interior element can be extracted by using a 1×5 small array.

![Figure 4. Calculated active element patterns for interior element.](image)

3.3. Results and Discussions

Based on the analysis to active element pattern mentioned above, the active element patterns of edge elements, adjacent edge elements, and interior elements can be extracted by computing the 1×3, 1×4, and 1×5 small arrays, respectively.

Figure 7 presents the far field patterns for a 1×7 microstrip array by using active element pattern technique, HFSS simulation, and
classical array analysis method, respectively. From Fig. 7, we can see that the results of using active element pattern technique are consistent with that of using HFSS simulation when the 1×7 microstrip array is fully excited. Compared with classical array analysis method, the SLL is enhanced by 0.93 dB.

A 1×12 microstrip array is also synthesized by using the active element pattern technique combining with the Taylor line source synthesis method. Fig. 8(a) shows the normalized excitation currents based on a 30 dB Taylor weights. Fig. 8(b) gives the synthesis radiating
patterns. It is clear that active element pattern technique gives a bigger SLL value than that given by the classical array analysis method. The SLL is enhanced by 1.58 dB when the effects of the mutual coupling and the surrounding array environment are rigorously taken into account.

Fig. 9 shows the far field patterns for different values of the number of elements N. It is clear that, with the value of the number of elements N increasing, the results by using active element pattern technique are agreement with that by using classical array analysis method near the main radiation direction. Away from the main radiation direction, the coupling between elements became larger, and the results given by the two methods are different because classical array analysis method
Figure 8. 30 dB Taylor weights and synthetic far field patterns for 1 × 12 microstrip array.

does not take into account the effects of the mutual coupling and the surrounding array environment.

The CPU times by using different approaches are given in Table 2. In this calculation, the computer with an Intel P4 3.0-GHz processor and 4-GHz RAM is used. It is obvious that the active element pattern technique (AEPT) can effectively reduce the computation burden. We can also see that the computation burden can be reduced further when the number of the array elements is increased. When the number of

Table 2. Time cost comparison between the active element pattern technique (AEPT) and HFSS simulation.

<table>
<thead>
<tr>
<th>Element numbers of the array</th>
<th>7</th>
<th>12</th>
<th>Over 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>AEPT</td>
<td>HFSS</td>
<td>AEPT</td>
</tr>
<tr>
<td>Calculated time for edge elements</td>
<td>1327s</td>
<td>------</td>
<td>1327s</td>
</tr>
<tr>
<td>Calculated time for adjacent edge elements</td>
<td>1505s</td>
<td>------</td>
<td>1505s</td>
</tr>
<tr>
<td>Calculated time for interior elements</td>
<td>783s</td>
<td>------</td>
<td>783s</td>
</tr>
<tr>
<td>Calculated time for the array</td>
<td>0.234s</td>
<td>16921s</td>
<td>0.265s</td>
</tr>
<tr>
<td>Total time</td>
<td>3615.234s</td>
<td>16921s</td>
<td>3615.265s</td>
</tr>
</tbody>
</table>
Figure 9. The far field patterns for different values of the number of elements N.
array elements is over 12, HFSS become incapable due to computer hardware limitation, but the active element pattern technique is still effective.

4. CONCLUSIONS

Active element pattern technique, in which the effects of the mutual coupling and the surrounding array environment are rigorously taken into account, combining with Taylor line source synthesis method is proposed and investigated. The proposed technique is effective when conventional array analysis methods are no longer adequate for arrays comprised of complex elements.

ACKNOWLEDGMENT

The authors would like to thank the supports by the National Natural Science Foundation of China (No. 90505001) and the Creative Research Group Program of UESTC.

REFERENCES

