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Abstract—Ray tracing is of great use for computational electro-
magnetics, such as the well-known shooting and bouncing ray (SBR)
method. In this paper, the kd-tree data structure, coupled with the
mailbox technique, is proposed to accelerate the ray tracing in the
SBR. The kd-tree is highly effective in handling the irregularly distri-
bution of patches of the target, while the repeatedly intersection tests
between the ray and the patch when using space division acceleration
structures can be eliminated through the mailbox technique. Numer-
ical results show excellent agreement with the measured data and the
exact solution, and demonstrate that the kd-tree as well as the mailbox
technique can greatly reduce the computation time.

1. INTRODUCTION

There are many important applications of ray tracing in computational
electromagnetics, such as radio wave propagation [1–7] and the
prediction of Radar Cross Section (RCS) [8]. In this paper, we explore a
fast and efficient algorithm to accelerate the ray tracing in the shooting
and bouncing ray (SBR) [9, 10] method for the RCS prediction of
arbitrarily shaped targets.

The SBR is well known for providing more accurate results by
including the scattering effect arising from multiple bounces. The
incident plane wave in the SBR is described as a dense grid of parallel
rays, which are shot toward the target. Each ray is recursively traced
according to the law of Geometrical Optics (GO), until it leaves the
target, and then Physical Optics (PO) [11–13] is preformed to obtain
the scattered field of this ray tube. The total number of initial rays is
decided by the electrical size of the target, since the density of incident
rays on the virtual aperture perpendicular to the incident ray direction
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should be greater than about ten rays per wavelength in view of the
convergence. For each ray, the number of ray-patch intersection tests
by using the brute force method, is proportional to the number of
all patches. Therefore, the ray-tracing procedure in the SBR is very
time-consuming for electrically large and complex targets.

Two most popular strategies to accelerate ray tracing are using
fewer rays and faster intersection. The adaptive grid division method
has been proposed to reduce the initial number of rays [14, 15]. On the
other hand, the key idea to reduce the number of intersection tests is
the use of acceleration data structures. Once the acceleration structure
is constructed, the rays for all incident and reflected rays could be
traced effectively. The octree, recursively subdividing the box into
eight children boxes using three axis-perpendicular planes, has been
used to reduce the number of intersection tests with the assumption
that patches are uniformly distributed in the target space [15, 16].

However, this assumption is not always the case, for example,
patches of the ship or the aircraft usually have an uneven spatial
distribution. It is necessary, therefore, to find an effective acceleration
data structure for the uneven spatial distribution of patches. In
computer graphics, different acceleration data structures across a
variety of scenes (targets) have been widely studied to evaluate their
relative performance, and the conclusion is that the kd-tree, which
adaptively subdivides the target space into uneven boxes, is the
best general-purpose acceleration structure for ray tracing of static
scenes [17]. Thus, this paper seeks to make use of the kd-tree to
accelerate the ray tracing in the SBR.

One drawback of space division acceleration structures, such as
the octree, uniform grid, and kd-tree, is that a ray may be tested for
intersection with the same patch multiple times, since the patch may
overlap multiple nodes of the acceleration structure. These redundant
intersection tests can be avoided using the mailbox technique [18],
whose implementation is explained in subsection 2.2.

In summary, the kd-tree acceleration structure in conjunction with
the mailbox technique is proposed for the ray tracing in the SBR in this
paper. The proposed method combined with the adaptive grid method
can significantly accelerate the ray tracing in the RCS prediction for
electrically large and complex targets.

2. RAY TRACING USING THE KD-TREE
ACCELERATION STRUCTURE

The kd-tree, which is a variation of the binary space partitioning tree,
recursively employs the axis-perpendicular plane to split the target
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Figure 1. (a) A 3D kd-tree. Interior nodes are labeled as their
splitting planes and leaf nodes are labeled in their boxes. (b) A graph
representation of the same kd-tree.

space into uneven axis-aligned boxes, as illustrated in Fig. 1. The
typical construction and traversal procedure, taken from Havran’s
thesis [17] as well as Pharr and Humphreys’ book [19], are reviewed as
follows, and how to apply the kd-tree in the SBR is also described.

2.1. Kd-Tree Construction

The kd-tree is constructed recursively from top to bottom, and the
root node corresponds to the bounding box of the target and contains
all patches. At each step of the recursive construction, a node, which
contains a group of patches that overlap the axis-aligned box of the
node, is processed to be an interior node or a leaf node. If the number of
patches in this node is less than the user-defined number, or the depth
of this node is above the maximum depth, or there is no benefit to
split this node, a leaf node will be created with its associated patches,
and the recursion of this node is terminated. Otherwise, this node will
be split in half by an axis-perpendicular plane and become an interior
node. Patches of this node are then associated with the child node
they overlap, and if the patch is across the splitting plane, it should
be associated with both children nodes. These two children nodes are
then processed recursively until the termination condition is satisfied.

In the interior node, the position of the splitting plane can be
placed at arbitrary position of three axes inside the node. The choice
of the splitting position is based on the ray-tracing cost estimation
model, in which the cost includes the traversal time of interior nodes
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and the ray-patch intersection time of leaf nodes. The optimal splitting
position is the one that adapts to the geometry of patches and
minimizes the total ray-tracing cost. This is the most notable difference
between the octree and the kd-tree, as at each step the octree simply
splits the box using three axis-perpendicular planes at the middle point
of the extent in each direction. This is also why the kd-tree can provide
faster ray tracing for the irregularly distribution of patches in the target
space.

The best known heuristic is the greedy Surface Area Heuristic
(SAH) that minimizes the estimated cost for the node individually to
construct the approximately optimal kd-tree based on the assumption
of uniformly distributed rays [20]. The assumption is reasonable in
the SBR, since it would be possible to predict the RCS of the target
in any incident direction and the incident and reflected rays would
be uniformly distributed in all directions. Under this assumption, the
geometric probability states that if a ray is known to pass through an
interior node N , the conditional probability of hitting the child node
N ′ is the ratio of their surface areas, SN ′ and SN :

P (N ′|N) = SN ′/SN . (1)

Therefore, when a random ray is intersected with an interior
node N , the estimated cost is composed of the traversal cost and the
probability-weighted ray-patch intersection costs of its children nodes
Nl and Nr. The traversal cost Ct is the time of traversing the interior
node and determining the traversal order of children nodes. The ray-
patch intersection cost of a child node with n associated patches is
simplified to n times one ray-patch intersection cost Ci. The traversal
cost Ct and one ray-patch intersection cost Ci are relative numerical
values defined by the user. Thus, the estimated cost CN for an interior
node N is

CN = Ct + [nlCiP (Nl|N) + nrCiP (Nr|N)], (2)

where nl and nr are the number of patches contained in children nodes
Nl and Nr, respectively.

It is clear that the optimal splitting position is the one where
the estimated cost CN is minimal, which can only be obtained at a
split position that is coincident with one of the planes of the patch’s
bounding box. As a result, split candidates are the bounding planes of
patches inside the node. Fig. 2 shows an example of split candidates
along the x-axis. For each split candidate, the surface area of children
nodes can be directly computed. However, the fast evaluation of the
patch numbers needs a carefully structured algorithm considering the
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Figure 2. Split candidates along the x-axis. Each patch has two split
candidates, for example, a1 and a2 for patch A.

efficiency. The process to search the optimal split position of one axis
is described as follows:

1) The split candidates are initialized by projecting the bounding
boxes of associated patches onto this axis. Each bounding box
has two split candidates, and each candidate contains the position
on this axis, the flag that represents the start or end of a bounding
box, and the patch it belongs to.

2) Sort these split candidates from low to high along the axis.
3) Sweep across the sorted split candidates iteratively, incrementally

update the patch number of children nodes, and compute the
estimated cost of each split candidate.

4) Output the position of the split candidate with the minimal cost.

The optimal split position and dimension is the one with the
minimal cost among three coordinate axes. It is possible that the
direct intersection cost nCi is less than the minimal cost CN , where
n is the number of patches associated in this node. If this happens, a
leaf node will be created, because there is no benefit to split this node.
Otherwise, split this node with the minimal-cost splitting plane, then
associate patches of this node with children nodes, and continue the
recursion construction.

The above description is the basic recursive construction, and
further optimizations can be found in [19]. As sorting is used to find
the optimal splitting plane at each step, the expected complexity of
this recursive construction is O(N log2 N), where N is the number of
all patches. Fig. 3 shows an aircraft and the splitting planes of its
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Figure 3. (a) An aircraft model. (b) The splitting planes of the
kd-tree of the same aircraft model.

kd-tree, and it can be noticeable that the target space is subdivided
into axis-aligned boxes with different sizes.

2.2. Kd-Tree Traversal with the Mailbox Technique

The ray tracing in the SBR searches for the nearest patch of the target
that is intersected with a geometrical-optics ray. At each intersection
position, GO is applied to compute the reflected direction and reflected
field, and recursively trace the reflected ray, until the ray exits the
target. The kd-tree traversal algorithm can be used to reduce the time
to find the nearest intersection between the ray and the target.

The traversal starts with the root node of the kd-tree, and a stack
is used as a priority queue of nodes left to visit according to how closer
to the ray origin. A (tmin, tmax) range defines the part of the ray that
is inside the current node.

At each interior node, its children nodes can be classified into the
near and far node in the ray-traversal order according to the relative
position between the ray’s origin and the splitting plane. The distance
tsplit from the ray origin to the splitting plane along the ray may allow
us only need to traverse one child node. The near node only needs to
be traversed, if the ray faces away from the far node (tsplit < 0) or
the range (tmin, tmax) lies entirely in the near node (tsplit > tmax), as
illustrated in Fig. 4(a) and Fig. 4(b), respectively. If the ray intersects
the splitting plane before the intersection position between the ray
and the node (tmin > tsplit), as showed in Fig. 4(c), only the far
node needs to be traversed. Otherwise, the both nodes need to be
processed, traversal firstly continue to the near node, and the far
node is pushed onto the stack together with its appropriate (tmin, tmax)
range. Following the above rules, the kd-tree is recursively traversed
down until a leaf node is encountered.
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Figure 4. Ray traversal of the interior node s3 (Fig. 1). According
to the origin position with respect to the splitting plane, the near and
far nodes are n4 and n3, respectively. Only the near node n4 needs to
be traversed in cases (a) and (b), and traversal only need to continue
to the far node n3 in case (c).

At each leaf node, the ray is iteratively tested for intersection
with patches of the leaf node to find the nearest intersection. As the
patch may be referenced in multiple leaf nodes and these leaf nodes are
usually neighboring nodes, there is a high probability that a ray may be
tested with the same patch multiple times. These redundant tests can
be avoided through the mailbox technique [17–19]. In this technique, a
unique integer index is assigned to each ray, and each patch also keeps
the index of the last tested ray. Before the ray is tested for intersection
with a patch, the index of the ray is compared with the index of the
patch. If they have the same index, then the ray-patch intersection
test has already been performed for this pair and it is unnecessary to
compute again. If the patch’s index is different from the index of the
current ray, the ray-patch intersection test is performed for this pair,
and the index of the patch is updated to be the index of the current ray.
In this manner, the mailbox technique is guaranteed that the number
of ray-patch intersection tests using the kd-tree will never be greater
than the brute force method.

If the ray intersected one of patches and the intersection is inside
the leaf node (the distance along the ray is within the (tmin, tmax)
range), the nearest intersection is found. At the intersection position,
the reflected ray is generated by GO and continues to be traced.
Otherwise, the next node with its (tmin, tmax) range is popped from
the stack and the traversal continues. If the stack is empty, the ray
passes through the target space without intersection, and then PO is
applied to calculate the far field contribution of this ray tube.

The expected complexity of this traversal algorithm for general
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targets with N leaf nodes is O(log N), which is usually proportional to
the height of the kd-tree.

3. NUMERICAL RESULTS AND DISCUSSION

The RCS of several targets are studied to validate the accuracy of
the ray tracing in the SBR using the kd-tree acceleration structure
combined with the mailbox technique. Additionally, the adaptive grid
method is applied simultaneously for following examples. Although
the initial size of the ray tube should be large enough to speed up the
prediction, it should be small enough to capture the tiny feature of the
target and to keep the same accuracy. Hence, the initial size and the
minimum size are defined as 1 and 0.0625 wavelength, respectively.

The first simple target is a right-angle dihedral corner with the
width 133 mm and the height 138 mm as illustrated in Fig. 5(a), which
has been studied in [14]. The monostatic RCS result for vv-polarization
is shown in Fig. 5(b) with an angular resolution of 1◦ at 10 GHz
frequency. The result is in good agreement with the measured data [14].

133mm

138m
m

φ

(a) (b)

Figure 5. (a) A right-angle dihedral corner. (b) Comparison of our
result and measured data [14] for the corner at 10 GHz, vv-polarization.

The simple ship is the second validated target defined in [14–16],
where some of the geometric details are unknown. Hence, a new ship is
modeled based on the available geometric parameters (0.9×0.2×0.2 m),
as shown in Fig. 6(a). As this ship is not identical with the one in [14–
16], which provide the measured data, a MLFMM result is used to
verify the accuracy. Fig. 6(b) shows the monostatic RCS comparison
of hh-polarization of the SBR result and the MLFMM result with an
angular resolution of 1◦ at 10 GHz frequency. A good agreement is
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Figure 6. (a) The geometry of the simple ship. (b) Comparison of our
result and the MLFMM result for the ship at 10 GHz, hh-polarization.
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Figure 7. (a) The geometry of generic complex missile. (b)
Comparison of our result and measured data of the missile at 7.5 GHz,
hh-polarization.

observed between these two results.
The final target is the generic complex missile. Fig. 7 illustrates

the geometry of the generic missile (1.1 × 0.25 × 0.2 m) and the hh-
polarization result compared with the measured data. The monostatic
RCS is predicted using an angular resolution of 1◦ at 7.5 GHz frequency
and the fifth-order reflection is maximum order of reflection. The
results show an acceptable agreement, and the deviation may be due
to the edge-diffraction effect, which is not included in the prediction
code.

The aim of this paper is the use of the kd-tree and the mailbox
technique to accelerate the ray tracing in the SBR, therefore, an
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elaborate study on the computational efficiency is presented in the
fashion similar to [14–16]. All calculations were performed in a 2.8 GHz
Pentium(R) D CPU and the computation times are the total time
of all incident angles. The adaptive grid method is also applied
for all methods using the same parameters. Two different types of
targets are investigated for different acceleration strategies. Each
target is described with a different number of patches to analysis the
relationship between the computation time and the number of patches.
The height of the octree is five the same as [15, 16].

The first target is the simple ship in Fig. 6. Table 1 shows
the change in the computation time of the SBR with the number of
patches using the brute force method, the octree-based method, and
the proposed method. As can be seen from Table 1, the computation
time is reduced significantly compared with the brute force method,
at least 6 times faster, and even for the small number of patches, the
time using the proposed method is smaller than the one accelerated
using the octree.

Table 1. The computation time of the simple ship (sec).

Numbers of patches 484 730 1286 1792 2440

Brute force method 345.86 600.26 1270.09 1911.59 2951.62

Octree-based method 92.11 108.93 140.05 161.62 186.61

Proposed method 54.22 62.95 83.21 93.99 109.53

The other target is the aircraft with complex structures (11.76 ×
7.4 × 3.67 m) in Fig. 3. The calculation parameters of the airplane
are the same as the one of the missile in Fig. 7, except that the
operating frequency is 10 GHz. Fig. 8 shows the computation time
of the SBR using the octree or kd-tree with/without the mailbox
technique. The numbers of patches evaluated in this example are 5
250, 8 724, 13 050, 16 988, and 22 294, respectively. As observed in
Fig. 8, the mailbox technique not only reduces the time of ray tracing
using the kd-tree, but also achieves an approximate 5% speedup for
the octree. This observation confirms that the mailbox technique can
avoid the redundant tests for space division acceleration structures,
and subsequently the time of ray tracing is reduced. As the number
of patches increases, the kd-tree taking into account the uneven
distribution of patches is at least 2 times faster than the octree for
the ray tracing in the SBR. The kd-tree scales well with the number of
patches, as when the number of patches increase from 5 250 to 22 294,
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Figure 8. Computation time of the SBR method using the octree and
kd-tree with/without the mailbox technique.

the computation time increases only about 50% as shown from Fig. 8,
and the memory requirement of the kd-tree for the largest number of
patches is only about 15 M.

4. CONCLUSION

It has been shown that the kd-tree acceleration structure constructed
based on the distribution of patches, significantly improves the
computational efficiency for the ray tracing in the SBR, while the
mailbox technique is used to prevent the repeatedly intersection with
the same patch in space division acceleration structures. Numerical
results demonstrate the accuracy and efficiency for the RCS prediction.
It can be expected that the kd-tree acceleration structure and
the mailbox technique can also be adapted to other computational
electromagnetic methods that use the ray tracing.
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