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Abstract—In this paper, the Haar wavelets basis functions are applied
to the method of moments to calculate the radar cross section of the
resistive targets. This problem is modeled by the integral equations
of the second kind. An effective numerical method for solving these
integral equations is proposed. The problem is treated in detail, and
illustrative computations are given for several cases. This method can
be generalized to apply to objects of arbitrary geometry.
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1. INTRODUCTION

The development of numerical methods for solving integral equations
in Electromagnetics has attracted intensive researches for more than
four decades [1, 2]. The use of high-speed computers allows one to
make more computations than ever before. During these years, careful
analysis has paved the way for the development of efficient and effective
numerical methods and, of equal importance, has provided a solid
foundation for a through understanding of the techniques.

Over several decades, electromagnetic scattering problems have
been the subject of extensive researches (see [3–54]). Scattering from
arbitrary surfaces such as square, cylindrical, circular, spherical [3–9]
are commonly used as test cases in computational Electromagnetics,
because analytical solutions for scattered fields can be derived for these
geometries [3].

An important parameter in scattering studies is the electromag-
netic scattering by a target which is usually represented by its echo
area or radar cross section (RCS) [55]. The echo area or RCS is de-
fined as the area intercepting the amount of power that, when scattered
isotropically, produces at the receiver a density that is equal to the den-
sity scattered by the actual target [56]. For a two-dimensional target
the scattering parameter is referred to as the scattering width (SW) or
alternatively as the radar cross section per unit length.

When the transmitter and receiver are at the same location, the
RCS is usually referred to as monostatic (or backscattered) and it is
referred to as bistatic when the two are at different locations [55].
Observations made toward directions that satisfy Snell’s law of
reflection are usually referred to as specular. Therefore the RCS of
target is very important parameter which characterizes its scattering
properties. A plot of the RCS as a function of the space coordinates is
usually referred to as the RCS pattern.

Calculating the radar cross section of the resistive targets leads to
solve the integral equations of the second kind with complex kernels.
Of course, if the resistance of the target approaches to zero, then the
problem is modeled by integral equations of the first kind. However,
for solving integral equations of the second kind, several numerical
approaches have been proposed. These numerical methods often use
the basis functions and transform the integral equation to a linear
system that can be solved by direct or iterative methods [57]. It
is important in these methods to select an appropriate set of basis
functions so that the approximate solution of integral equation has a
good accuracy.

It is the purpose of this paper to use the Haar wavelets as a set
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of orthogonal basis functions and to apply them to the method of
moments for calculating the radar cross section of the resistive targets.
Using this method, the second kind integral equation reduces to a
linear system of algebraic equations. Solving this system gives an
approximate solution for these problems.

First of all, an extensive review of wavelets containing the
definition, expansion and properties is performed. After this, the
electric field integral equation is introduced. Then, the method of
moments is proposed for solving integral equations of the second kind
using Haar wavelets basis functions. Finally, the problem of calculating
the radar cross section of the resistive strips is described in detail
and solved by the presented method, and illustrative computations
are given for several cases.

2. WAVELET: DEFINITION, EXPANSION, AND
PROPERTIES

A wavelet is a “small wave”, which has its energy concentrated in
time to give a tool for the analysis of transient, nonstationary, or
time-varying phenomena [58]. It still has the oscillating wave-like
characteristic but also has the ability to allow simultaneous time and
frequency analysis with a flexible mathematical function.

In this section, the definition of wavelets and expansion of any
function f(t) in terms of these basis functions is presented. Also, some
properties of wavelets are surveyed.

2.1. Definition and Expansion

We start by defining the scaling function and then define the wavelet
in terms of it.

Let L2(R) be the space of square integrable functions. A set of
scaling functions in terms of integer translates of the basic scaling
function or father wavelet ϕ(t) is defined by [58]

ϕk(t) = ϕ(t − k), k ∈ Z, ϕ ∈ L2(R). (1)

The subspace of L2(R) spanned by these functions is defined as

V0 = Span
k∈Z

{ϕk(t)}. (2)

This means that

f(t) =
∑

k

ckϕk(t) for any f(t) ∈ V0. (3)
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One can generally increase the size of the subspace spanned by
changing the time scale of the scaling function. A two-dimensional
family of functions is generated from the basic scaling function or father
wavelet by scaling and translation by [58]

ϕj, k(t) = 2j/2ϕ
(
2jt − k

)
, (4)

whose span over k is

Vj = Span
k∈Z

{ϕk (2jt)} = Span
k∈Z

{ϕj, k(t)}. (5)

So, {ϕj, k(t)}k is a basis for Vj . This means that if f(t) ∈ Vj , then it
can be expressed as

f(t) =
∑
k∈Z

ckϕj, k(t), (6)

where Eq. (6) represents the projection of the function f onto the
subspace of scaling functions or father wavelets at resolution j.

According to the above definitions, it is clear that

Vj ⊂ Vj+1 for all j ∈ Z. (7)

The nesting of the spans of ϕ(2jt − k), denoted by Vj and shown
in Eq. (7), is achieved by requiring that ϕ(t) ∈ V1, which means that if
ϕ(t) is in V0, it is also in V1, the space spanned by ϕ(2t). This means
ϕ(t) can be expressed in terms of a weighted sum of shifted ϕ(2t) as

ϕ(t) =
∑
n∈Z

h(n)
√

2ϕ(2t − n), (8)

where the sequence {h(n)} of real or perhaps complex numbers is called
the scaling function or father wavelet coefficients (or the scaling filter
or the scaling vector) and the

√
2 maintains the norm of the scaling

function with the scale of two.
The Eq. (8) is called the refinement equation, the multiresolution

analysis (MRA) equation, or the dilation equation [58, 59]. Now, a
different set of functions ψj, k(t) can be defined that span the differences
between the spaces spanned by the various scales of the scaling
function. These functions are the mother wavelets. There are several
advantages to requiring that the father wavelets and mother wavelets
be orthogonal. Orthogonal basis functions allow simple calculation
of expansion coefficients satisfying Parseval’s theorem that allows a
partitioning of the signal energy in the wavelet transform domain. The
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orthogonal complement of Vj in Vj+1 is defined as Wj . This means that
all members of Vj are orthogonal to all members of Wj . We require

< ϕj, k(t), ψj, l(t) >=
∫

ϕj, k(t)ψj, l(t)dt = 0, (9)

for all appropriate j, k, l ∈ Z.
The relationship of the various subspaces can be seen from the

following expressions. Using Eq. (7) we may start at any Vj , say at
j = 0, and write

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R). (10)

Now, the wavelet spanned subspace Wj can be defined such that

V1 = V0 ⊕W0,

which extends to

V2 = V0 ⊕W0 ⊕W1.

In general this gives

L2 = V0 ⊕W0 ⊕W1 ⊕ . . . , (11)

when V0 is the initial space spanned by the scaling function ϕ(t − k).
Fig. 1 pictorially shows the nesting of the father wavelet spaces Vj for
different scales j and how the mother wavelet spaces are the disjoint
differences (except for the zero element) or, orthogonal complements.

0V0W1W2W

0123 VVVV0012 VWWW ⊃⊥ ⊥ ⊥ ⊃ ⊃

Figure 1. Father wavelet and mother wavelet vector spaces.

The scale of the initial space is arbitrary and could be chosen at
a higher resolution of, say, j = j0 to give

L2 = Vj0 ⊕Wj0 ⊕Wj0+1, (12)
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or at even j = −∞ where Eq. (12) becomes

L2 = · · · ⊕W−2 ⊕W−1 ⊕W0 ⊕W1 ⊕W2 . . . (13)

Since these mother wavelets reside in the space spanned by the
next narrower father wavelet, W0 ⊂ V1, they can be represented by a
weighted sum of shifted father wavelet ϕ(2t) defined in Eq. (8) by

ψ(t) =
∑
n∈Z

h1(n)
√

2ϕ(2t − n), (14)

for some sequences of coefficients {h1(n)}. It can be shown that the
mother wavelet coefficients are required by orthogonality to be related
to the father wavelet coefficients by [58, 59]

h1(n) = (−1)nh(1 − n), (15)

the function generated by (14) gives the mother wavelet ψ(t) for a class
of expansion functions of the form

ψj, k(t) = 2j/2ψ
(
2jt − k

)
, j, k ∈ Z, (16)

where, 2j is the scaling of t, 2−jk is the translation in t, and 2j/2

maintains the L2 norm of the wavelet at different scales.
The set of these functions is a basis for the space of square

integrable functions L2(R), i.e.,

f(t) =
∑

j

∑
k

dj, kψj, k(t), f(t) ∈ L2(R). (17)

2.2. Some Properties of Wavelets

The wavelet expansion set is not unique. There are many different
wavelets systems that can be used effectively, but all seem to have
some similar characteristics [58–60].

1. All so-called first-generation wavelet systems are generated from
a single scaling function (father wavelet) or mother wavelet by
scaling and translation.

2. The lower resolution coefficients can be calculated from the higher
resolution coefficients by a tree-structured algorithm called a filter
bank. This allows a very efficient calculation of the expansion
coefficients.
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3. Almost all useful wavelet systems satisfy the multiresolution
conditions. A multiresolution analysis (MRA) is a nested
sequence.

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ . . .

of subspaces of L2(R) with a scaling function ϕ such that
i)

⋃
j∈Z

Vj is dense in L2(R),

ii)
⋂

j∈Z

Vj = {0},

iii) f(t) ∈ Vj if and only if f(2−jt) ∈ V0, and
iv) {ϕ(t − k)}k∈Z is an orthogonal basis for V0.

4. If the father wavelets and mother wavelets form an orthogonal
basis, there is a Parseval’s theorem that relates the energy of the
signal f(t) to the energy in each of the components and their
wavelet coefficients. That is one reason why orthogonality is
important.

2.3. The Haar Wavelet System

Wavelets are grouped into families, with names such as the Haar
wavelets, the Mexican Hat wavelets, the Shannon wavelets and
etc. [60].

If we choose the scaling function to have compact support over
0 ≤ t ≤ 1, then a solution to (8) is a father wavelet as follows [58, 60]:

ϕ(t) =
{

1, if 0 ≤ t < 1
0, otherwise

(18)

with only two nonzero coefficients h(0) = h(1) = 1/
√

2 and (14)
and (15) require the mother wavelet to be

ψ(t) =




1, for 0 ≤ t <
1
2

−1, for
1
2
≤ t < 1

0, otherwise

(19)

with only two nonzero coefficients h1(0) = 1/
√

2 and h1(1) = −1/
√

2.
Note that the father and mother wavelets are related in the following
way:

ψ(t) = ϕ(2t) − ϕ(2t − 1). (20)
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V0 is the space spanned by ϕ(t − k). The next higher resolution
space V1 is spanned by ϕ(2t − k) which allows a somewhat more
interesting class of functions or signals which does include V0. As we
consider higher values of scale j, the space Vj spanned by ϕ(2jt − k)
becomes more suitable to approximate arbitrary functions or signals.

The Haar wavelets are illustrated in Fig. 2 that shows clearly how
increasing the scale allows greater and greater detail to be realized.
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Figure 2. Haar scaling functions that span Vj .

According to the orthogonal decomposition presented in subsec-
tion 2.1, for arbitrary scale j we can write

Vj+1 = Vj ⊕Wj , (21)

for example, for V3

V3 = V2 ⊕W2. (22)

The V2 can be further decomposed into

V2 = V1 ⊕W1. (23)

Also, the V1 can be decomposed as

V1 = V0 ⊕W0. (24)

By continuing to decompose the space spanned by the scaling function
until the space is one constant, the complete decomposition of V3 is
obtained. This is shown in Fig. 3.
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Figure 3. Haar father and mother wavelets decomposition of V3.

3. ELECTRIC AND MAGNETIC FIELD INTEGRAL
EQUATIONS

The key to the solution of any scattering problem is a knowledge
of the physical or equivalent current density distributions on the
volume or surface of the scatterer. Once these are known then the
radiated or scattered fields can be found using the standard radiation
integrals. A main objective then of any solution method is to be able
to predict accurately the current densities over the scatterer. This can
be accomplished by the integral equation (IE) method [55].

In general there are many forms of integral equations. Two of
the most popular for time-harmonic Electromagnetics are the electric
field integral equation (EFIE) and the magnetic field integral equation
(MFIE). The EFIE enforces the boundary condition on the tangential
electric field and the MFIE enforces the boundary condition on the
tangential components of the magnetic field. The electric field integral
equation will be discussed here.

3.1. Electric Field Integral Equation

The electric field integral equation (EFIE) is based on the boundary
condition that the total tangential electric field on a perfectly electric
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conducting (PEC) surface of scatterer is zero [55]. This can be
expressed as

Et
t(r = rs) = Einc

t (r = rs) + Escat
t (r = rs) = 0 on S, (25)

or

Escat
t (r = rs) = −Einc

t (r = rs) on S, (26)

where, S is the conducting surface of the scatterer and r = rs is
the position vector of any point on the surface of the scatterer. The
subscript t indicates tangential components.

The incident field that impinges on the surface of the scatterer
induces on it an electric current density Js which in turn radiates the
scattered field. The scattered field everywhere can be found using the
following equation [55]:

Escat(r)=−jωA − j
1

ωµε
∇(∇ · A)=−j

1
ωµε

[
ω2µεA + ∇(∇ · A)

]
,

(27)

where,
ε, is the permittivity of the medium;
µ, is the permeability of the medium;
ω, is the angle frequency of the incident field;
∇, is the gradient operator;
A, is the magnetic vector potential, so that

A(r) = µ

∫ ∫
S
Js(r′)

e−jβR

4πR
ds′, (28)

where, R is the distance from source point to the observation point.
Equations (27) and (28) can also be expressed as [55]

Escat (r)=−j
η

β

[
β2

∫∫
S
Js

(
r′

)
G

(
r, r′

)
ds′+∇

∫∫
S
∇′ · Js

(
r′

)
G

(
r, r′

)
ds′

]
,

(29)

where, η is the intrinsic impedance of the medium and β is the phase
constant; r and r′ are the position vectors of the observation point and
source point respectively. also,

G
(
r, r′

)
=

e−jβR

4πR
, (30)

R = |r − r′|. (31)
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In Eq. (29), ∇ and ∇′ are, respectively, the gradients with respect to
the observation and source coordinates and G(r, r′) is referred to as
Green’s function for a three-dimensional scatterer.

If the observations are restricted on the surface of the scatterer
(r = rs), then Eq. (29) through Eq. (31) can be expressed using
Eq. (26) as

j
η

β

[
β2

∫ ∫
S
Js

(
r′

)
G

(
rs, r′

)
ds′ + ∇

∫ ∫
S
∇′ · Js

(
r′

)
G

(
rs, r′

)
ds′

]

=Einc
t (r = rs) . (32)

Because the right side of Eq. (32) is expressed in terms of the known
incident electric field, it is referred to as the electric field integral
equation (EFIE). It can be used to find the current density Js(r′)
at any point r = r′ on the scatterer. It should be noted that Eq. (32)
is actually an integro-differential equation, but usually it is referred to
as an integral equation.

Equation (32) is a general surface EFIE for three-dimensional
problems and its form can be simplified for two-dimensional geometries.
Note that this equation gives the EFIE for conducting surfaces. EFIE
for the resistive surfaces will be described in detail in Section 5.

4. IMPLEMENTING THE METHOD OF MOMENTS
USING HAAR WAVELETS

In this section, we apply Haar wavelets as orthogonal basis functions
to solve the integral equations of the second kind by moments method.

Consider the following Fredholm integral equation of the second
kind:

x(s) +
∫ b

a
k(s, t)x(t)dt = y(s), (33)

where, k(s, t) and y(s) are known functions but x(t) is unknown. We
can select a sequence of finite dimensional subspaces Vj ⊂ L2(R), j ≥ 1.
Let {ϕn, k}n

k=1 be a wavelet basis for Vj in which, n = 2j . Moreover,
k(s, t) ∈ L2([a, b) × [a, b)) and y(s) ∈ L2([a, b)). Approximating the
function x(s) with respect to the basis functions by (6) gives

x(s) �
n∑

k=1

ckϕn, k(s), (34)

such that the cks are wavelet coefficients of x(s) that should be
determined.
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Substituting Eq. (34) into (33) follows:

n∑
k=1

ckϕn, k(s) +
n∑

k=1

ck

∫ b

a
k(s, t)ϕn, k(t)dt � y(s). (35)

Now, let si, i = 1, 2, . . . , n, be n appropriate points in interval
[a, b); putting s = si in Eq. (35) follows:

n∑
k=1

ckϕn, k(si) +
n∑

k=1

ck

∫ b

a
k(si, t)ϕn, k(t)dt � y(si),

i = 1, 2, . . . , n,

(36)

or
n∑

k=1

ck

[
ϕn, k(si) +

∫ b

a
k(si, t)ϕn, k(t)dt

]
� y(si),

i = 1, 2, . . . , n.

(37)

Now, replace � with =, hence Eq. (37) is a linear system of n
algebraic equations for n unknown coefficients c1, c2, . . . , cn. So, an
approximate solution x(s) � ∑n

k=1 ckϕn, k(s), is obtained for Eq. (33).

5. CALCULATING THE RADAR CROSS SECTION OF
THE RESISTIVE STRIPS

Now, the problem of calculating the RCS of the resistive strips is solved
using the presented approach. In Fig. 4, there is a resistive strip that is
very long in the ±z direction. This strip is encountered by an incoming
plane wave that has a polarization with its electric field parallel to the
z-axis. The magnetic field of this wave is entirely in the x-y plane, and
is therefore transverse to the z-axis. It is called transverse magnetic
(TM) polarized wave. This polarization therefore produces a current
on the strip that flows along the z-axis.

The magnetic vector potential of the current flowing along the
strip is given by [61]

Az =
µ0

4j

∫ a/2

−a/2
Iz

(
x′)H

(2)
0

(
k|x − x′|

)
dx′, (38)

where,

k = 2π
λ , is free space wave number;
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Figure 4. A resistive strip of width a is encountered by an incoming
TM-polarized plane wave.

λ, is the wave length;
µ0 = 4π × 10−7 H/m, is free space permeability;

G(x, x′) = 1
4j H

(2)
0 (k|x − x′|), is 2D free space Green’s function;

H
(2)
0 (x), is a Hankel function of the second kind of zero order.

So, the electric field is given by

Ez(x) = jωAz(x), (39)

or

E(x) =
ωµ0

4

∫ a/2

−a/2
Iz

(
x′)H

(2)
0

(
k|x − x′|

)
dx′. (40)

Assume that Rs(x) is the surface resistance of the strip and note
that the units of surface resistance are in Ω/m2. The boundary
condition at the surface of a thin resistive strip is given by the following
equation [61]:

−Einc = Escat + Rs(x)J(x), (41)

where,

J(x), is the surface current of the strip;
Escat, is the scattered electric field produced by the surface
current.

Assuming Einc = ejkx cos φ0 , from Eq. (40) and Eq. (41) it follows:

Rs(x)I(x) +
ωµ0

4

∫ a/2

−a/2
I

(
x′)H

(2)
0

(
k|x − x′|

)
dx′ = −ejkx cos φ0 , (42)
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where, I(x) is the current of the strip.
Equation (42) can be converted to the following equation:

h(x) +
∫ b

a
G

(
x, x′)h

(
x′) dx′ = g(x), (43)

where,
h(x) = I(x);

G(x, x′) = ωµ0

4
1

Rs(x)H
(2)
0 (k|x − x′|);

g(x) = − 1
Rs(x)e

jkx cos φ0 .

It is a Fredholm integral equation of the second kind and can be
solved by the presented method. However, from Eq. (42) I(x) can be
obtained and then the RCS of the strip can be computed easily.

RCS in two dimensions is defined mathematically as [61]

σ(φ) = lim
r→∞

2πr
|Escat|2
|Einc|2 . (44)

In two dimensions, the free space Green’s function is

G
(
r, r′

)
=

1
4j

H
(2)
0

(
k|r − r′|

)
. (45)

The magnetic vector potential in two-dimensional space is

A(r) = µ

∫∫
J

(
r′

)
G

(
r, r′

)
ds′. (46)

The electric field is given by

E = jωA. (47)

Combining (45), (46), and (47) we obtain

E(r) =
ωµ

4

∫∫
J

(
r′

)
H

(2)
0

(
k|r − r′|

)
ds′. (48)

In the TM situation, the incident electric field along the strip is
1 V/m (|Einc|2 = 1). So, the denominator of Eq. (44) is unity. This
allows us to turn our attention to the numerator. To evaluate (48), we
note that as r −→ ∞, we can use the large argument approximation
for the Hankel function [61]

H
(2)
0 (r) ≈

√
2
πr

e−j(r−π
4 ). (49)
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Substituting this into (48) and implementing Eq. (44) for the TM
case, we obtain

σ(φ) =
kη2

4

∣∣∣∣
∫

strip
I

(
x′, y′

)
ejk(x′ cos φ+y′ sin φ)dl′

∣∣∣∣
2

. (50)

where, η = 376.73 Ω.
In the presented case, the strip is restricted to the x-axis, which

simplifies Eq. (50)

σ(φ) =
kη2

4

∣∣∣∣∣
∫ a/2

−a/2
I

(
x′) ejkx′ cos φdx′

∣∣∣∣∣
2

. (51)

Also, it is possible to define a logarithmic quantity with respect
to the RCS, so that

σdBlm = 10 log10 σ. (52)

5.1. Uniform Resistance Distribution

Assume that the Rs(x) has a uniform value in throughout of the surface
of strip. Considering Eq. (42), I(x) is computed for Rs of 0, 500,
1000 (Ω/m2), φ0 = π

2 , a = 6λ (m) and f = 0.3 GHz, and then RCS
is obtained of Eqs. (51) and (52). The current distributions of the
resistive strip for these values of Rs are shown in Figs. 5–8.
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for Rs of 500 and 1000 (Ω/m2)
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Figure 8. The imaginary part
of current across the 6 − λ
resistive strip for Rs of 500 and
1000 (Ω/m2) and f = 0.3 GHz.

In Figs. 9 and 10, the bistatic RCS of the 6− λ resistive strip, for
Rs of 0, 500, 1000 (Ω/m2) and for φ0 = π

2 , 2π
3 has been shown. Also,

in Fig. 11 the monostatic RCS of this strip is given. It is seen that the
level of the first side lobe is nearly 13 dB down from the main lobe.

0 20 40 60 80 100 120 140 160 180
- 40

-30

-20

-10

0

10

20

30

Observation angle (degrees)

B
is

ta
ti

c 
R

C
S 

(d
B

lm
)

0 Ohms/m2

500 Ohms/m2

1000 Ohms/m2

Figure 9. The bistatic RCS of
the 6 − λ resistive strip for Rs of
0, 500, 1000 (Ω/m2) and φ0 = π
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Figure 11. The monostatic RCS
of the 6 − λ resistive strip for Rs

of 0, 500, 1000 (Ω/m2).
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-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6

Distance along strip (in terms of wave length)

C
ur

re
nt

 (
m

A
/m

)

Magnitude

Real

Figure 13. The magnitude and
real part of current across the 6−λ
resistive strip of Fig. 12 for k = 2
and f = 0.3 GHz.
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Figure 14. The imaginary part
of current across the 6−λ resistive
strip of Fig. 12 for k = 2 and
f = 0.3 GHz.

5.2. Quadratic Resistive Taper

Consider a quadratic resistive taper expressed by

Rs(x) = 2η
(

kx

a

)2

(Ω/m2), (53)

where, k is a real coefficient.
Figure 12 shows the quadratic taper of a 6−λ strip for k = 2. After

computing I(x) by Eq. (42), the RCS of this strip can be obtained. For
φo = π

2 , the magnitude, real part and imaginary part of strip current
are shown in Figs. 13 and 14, and the bistatic radar cross section of this
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strip shown in Figs. 15 and 16 has been calculated for k = 0.5, 1, 2,
φ0 = π

2 , π
4 , and f = 0.3 GHz. Fig. 17 shows the monostatic RCS. It

is seen that the quadratic taper reduces the first side lobe to a level
of −23 dB below the main lobe. This taper has reduced the first side
lobe by 10 dB, compared with a uniform distribution.
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Figure 17. The monostatic RCS
of the 6−λ resistive strip of Fig. 12
for k = 0.5, 1, 2.
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Figure 18. Sinc form resistance
distribution of a 6 − λ resistive
strip for k = 1.

5.3. Sinc Form Resistance Distribution

In this subsection the problem of determining the scattered fields is
solved for a resistive strip of a sinc form resistance distribution shown
in Fig. 18.
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Consider a sinc form resistance expressed by

Rs(x) = 2η
∣∣∣∣sin kπax

kπax

∣∣∣∣ (Ω/m2), (54)

in which, k is a real coefficient.
Applying Eq. (42) to this case gives the current distribution which

has been shown in Fig. 19. Then, the bistatic RCS of this case
is obtained of Eqs. (51) and (52). Figure 20 shows the results for
k = 0.8, 3, 30 and f = 0.3 GHz.

For k = 30, the level of the first side lobe is nearly 13 dB down
from the main lobe.
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Figure 19. Current across the
6 − λ resistive strip of Fig. 18 for
k = 1 and f = 0.3 GHz.
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the 6− λ resistive strip of Fig. 18
for k = 0.8, 3, 30 and φ0 = π
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5.4. Exponential Distribution

The final case is an exponential form distribution of the strip resistance
which is defined below:

Rs(x) = 2η
(

kx

a

)2

exp
(
−

∣∣∣∣kx

a

∣∣∣∣
)

(Ω/m2). (55)

Figure 21 shows the exponential form resistance distribution of a
6−λ strip for k = 1. Current distribution of this case for k = 1 is shown
in Fig. 22, and its bistatic RCS for k = 0.5, 1, 1.5 and f = 0.3 GHz is
shown in Fig. 23.
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Figure 22. Current across the
6 − λ resistive strip of Fig. 21 for
k = 1 and f = 0.3 GHz.
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6. CONCLUSION

The presented method in this paper is applied to solve the integral
equations of the second kind arising in problem of calculating the radar
cross section of the resistive targets based on the method of moments
and using the Haar wavelets basis functions.

As the numerical results showed, this method reduces an integral
equation of the second kind to a linear system of algebraic equations.

The problem of calculating the RCS of the resistive strips was
treated in detail, and illustrative computations were given for several
cases.
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A comparison of the method presented here with other methods
that we have implemented using the block-pulse or triangular basis
functions [28,31] shows the accuracy and validity of the presented
method.

This method can be easily generalized to apply to objects of
arbitrary geometry and arbitrary material.
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