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Abstract—This paper proposes a methodology for numerically
synthesizing element values of coupled resonator filters. These element
values are compatible in retrieving coupling matrix of a cross-coupled
quadruplet structure (also known as the folded structure). Differed
from direct synthesis by matrix rotation, numerical solution has been
adopted here to its equivalent coupling model. For varied specified
return loss, numerical solutions of these element values have been
derived and their accuracy is verified with their analytical counterparts
to be extended for stringent design requirement. In addition, multiple
sets of data are tabulated and categorized for efficient filter synthesis
design under different specified pass-band return loss. In the end,
an example quadruplet filter is designed, fabricated and measured for
validation of the presented synthesis design methodology.

1. INTRODUCTION

Ever since 1970s, the synthesis design of coupled resonator circuits
has been discussed by numerous research groups. A. E. Atia, et
al., in [1] and [2] elaborated the synthesis of coupling matrix for
general filter functions. Started from the factorization of the two-port
filter admittance, the original coupling matrix is obtained from the
eigen-matrix and transformation matrix using the standard Darlington
procedure [3]. Since transformation matrix is derived from the Gram-
Schmidt Orthonormalization of its first and last rows, all the eigen-
values related to an eigen-matrix can be preserved in the resultant
coupling matrix. Here the eigen-values of the filter response will
be determined in terms of the factorization from the two-port filter
admittance. Normally after the original coupling matrix is created,
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reduction and annihilation of matrix elements is still needed to make
the coupling matrix realizable. Cameron in [4] and [5] thus introduced
the direct synthesis for the folded cross-coupled structure to directly
synthesize the practical coupling matrix according to the specified filter
response without necessity of similarity transformation.

Differed from the general synthesis of coupling matrix, Levy’s
synthesis design [6] is based primarily on constructing an equivalent
quadruplet structure and solving its element circuit values, adopting
both an approximation method and a much more accurate synthesis
also based on standard Darlington procedure [3]. Furthermore, Hong
used this quadruplet structure to implement selective band-pass filters
on planar microwave structure [8, 9]. The exact analysis on the
filter element values requires comparatively complicated procedure [3]
and [6], while the approximate analysis causes unacceptable inaccuracy
when the selectivity requirement is high [6] and [8]. For this reason,
Hong tabulated a list of design table for highly selective filter with
a pair of finite transmission zeros as detailed in [7] and [8]. However,
practical design demonstrated that the results are accurate but they are
only valid on a certain range of pass-band return loss, besides, the data
extraction itself still requires the standard Darlington procedure [3].

In this work, we will introduce an alternative methodology to
synthesize the element values of the canonical quadruplet structure [6].
This methodology no longer requires the standard Darlington
procedure to extract elemental circuit values (or its corresponding
coupling matrix), yet the accuracy is retained as comparing to
the approximate analysis [6]. This methodology used network
analysis on the equivalent coupling circuit to retrieve its transmission
parameter. In order to obtain the element values for the required filter
specification, a set of determinant equations is achieved with actual
physical meaning and pass-band return loss can be further included as a
synthesis parameter. After systematic description is made, a prototype
filter is fabricated for verification in experiment.

2. FILTER NETWORK AND SYNTHESIS

The equivalent quadruplet [6] (or folded [4]) structure was introduced
and analyzed as a basic cross-coupled resonator filter network. Differed
from [4] and [6], in this work, we would like to develop an alternative
methodology to express its transmission parameter using the network
parameters.
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2.1. Equivalent Circuit Network

Figure 1 depicts a generalized equivalent network of the well-known
quadruplet filter using unit or normalized parameters, i.e., g1, g2, J ,
J1 and J2. Herein, g1 and g2 are symbolized as the two individual
resonators and they represent their shunt reactance in their LC models
at a single frequency. Plus, the four resonators are set to resonate at
the same required frequency. This example filter is terminated at two
external ports, i.e., Ports 1 and 2, with matched load impedance.

g1

g1
g2

g2

J2J1

J=1 

J=1 

Port 1 

Port 2 

Figure 1. Equivalent network of cross-coupled quadruplet filter.

The parameters, J , J1 and J2, are symbolized as the immitance
invertors which can be interpret by a set of coupled microstrip
lines. The coupling coefficient between resonators is quantified by
the normalized characteristic impendence of the immitance inverters.
The middle-located inverter J is fixed at the unit ‘1’. Therefore, the
tunable or undecided parameters are reactance g1 and g2, inverter J1

and J2. In addition, J1 is dotted as a negative coupling quantity
to be distinguished from J2 and J . These two paths work together
so as to realize a pair of finite transmission zeros in the lower
and/or higher ranges than the desired pass-band. As this quadruplet
network is established, the remaining problem is how to obtain the
relationship between element values and specified filter response which
is represented by those element values.

2.2. Network Parametric Description

Differed from the traditional synthesis methodology in a sense of
coupling matrix, the element values are not directly obtained from
transformation of its eigen matrix here. From the top part of Figure 1,
a shunt structure can be formed and it consists of two branches in
this quadruplet structure. On one hand, the longer branch (Path A)
is formed by sequentially cascading the 1st resonator g1, 1st mixed
coupled inverter J = 1, 1st resonator g2, the magnetically coupled
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inverter J2, 2nd resonator g2, 2nd mixed coupled inverter J = 1 and
2nd resonator g1. On the other hand, the shorter branch (Path B)
only includes an electronically coupled inverter J1. Therefore, these
two branches or paths create a pair of routes so as to produce the
expected cross coupling.

The overall transfer or ABCD matrix of the above longer branch
can be simply derived as below by multiplying the transfer or ABCD
matrices of every element matrix involved. The definition of these
matrices is given in Table 1.(

1 0
j × s × g1 1

)(
0 j
j 0

)(
1 0

j × s × g2 1

)(
0 j/J2

j × J2 0

)

·
(

1 0
j × s × g2 1

)(
0 j
j 0

) (
1 0

j × s × g1 1

)
=

(
Ta11 Ta12

Ta21 Ta22

)
(1)

In Table 1, only the inverter matrices are frequency independent,
so this can be helped to regulate the complexity of the synthesized
transfer function and decide the degrees of its related polynomial
function. In the following, the calculated transfer matrix will be used
for numerically determining all four unknown element values, included
in the transfer parameter expression based on the synthesis approach.

Similarly, the single-valued branch or Path B can be expressed as
a unified transfer matrix as shown in Equation (2).(

0 j/J1

j × J1 0

)
=

(
Tb11 Tb12

Tb21 Tb22

)
(2)

Table 1. Definition of element matrices.

Element matrices Corresponding circuit elements(
1 0

j × s × g1 1

)
Shunt reactance g1(

0 j

j 0

)
Normalized inverter J = 1

(
1 0

j × s × g2 1

)
Shunt reactance g2(

0 j/J2

j × J2 0

)
Inverter with characteristic admittance J2(

Ta11 Ta12

Ta21 Ta22

)
Transfer matrix in Path A
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Figure 2. Scattering parameters versus normalized frequency under
the fixed locations of transmission poles and zeros.

Since the admittance parameter of every branch can be derived
using the relationship between the admittance and transfer matrices as
given in [10], the admittance matrix of the overall network in Figure 1
can be simply summed up by two parallel-connected branch admittance
matrices, thereby getting its corresponding scattering matrix [10].

In this way, the transmission/reflection responses are expressed
directly in terms of complex frequency variable s, with their polynomial
coefficients described by element value g1, g2, J1 and J2.

2.3. Determined Solution

The element values are variables to be determined according to the
specified filter response. Previously, pure matrix transformation
has been used for exact synthesis of the element values or its
correspondent coupling matrix. Differed from the standard Darlington
Procedure in [1–6], the equation here is directly established from
the transmission/reflection response instead of their eigenvalue and
eigenvector expression. Taking the resultant forward transmission
parameter S21 as an example below

S21 =
n2s

2 + n1s + n0

d4s4 + d3s3 + d2s2 + d1s + d0
(3)

Many coefficients in Equation (3) can be defined as below while
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the coefficients undefined all have zero value.

n2 = 2J1g
2
2 (4)

n0 = 2(J2 − J1J
2
2 ) (5)

d4 = g2
1g

2
2 (6)

d2 = −g2
2 − g2

2J
2
1 − 2g1g2 − g2

1J
2
2 (7)

d1 = 2g2 + 2g1J
2
2 (8)

d0 = −2J1J2 + J2
2 + J2

1J2
2 + 1 (9)

Substituted by Equations (4)–(9), it can be well imaged that
the forward transmission parameter becomes rather complicated as
a rational function. For the evenly-equated filter function, we need
six equations. Two are from numerator and four equations are from
denominator of the rational function, respectively.

If we utilize the forward reflection parameter S11 for synthesis,
an even complicated expression will be found. However, to solve the
unknown element values, much less equations are required. For the unit
quadruplet circuit as shown in Figure 1, only four equations are in fact
required. Contrarily, over-determined equations may cause complexity
in finding the solution, yet neither the accuracy nor the convergence
will be enhanced.

Therefore, a set of determined equations here is required for
standard solution on the quadruplet structure and its cascaded form.
Since the polynomial expression on a continuous span of frequency
spectrum would only result in the complicate rational expression,
we try to find its discrete values with resorting to its frequency
singularities. Below are the four determined equations.⎧⎪⎪⎨

⎪⎪⎩

S11(reflection zero pair1) = 0
S11(reflection zero pair2) = 0
S21(transmission zero pair) = 0
S11(zero frequency) = LR

(10)

In Equation (10), the first two equations related to the reflection
zero pair1 and pair2 create the four pass-band transmission poles and
they can be found from the degree of denominator in the S21 or
conversion of Equations (1) and (2). The third one is to determine
a pair of transmission zero. Here we use the first three equations to
quantitatively express the emergence of zero/poles. Finally, the last
equation is achieved for the structures at zero frequency and it is used
to indicate the specified return loss zero frequency. Therefore, the
return loss at zero frequency can be specified as any expected level,
which extends the design flexibility. As the scattering parameters
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are derived in close form of frequency variable, four unknown element
values can be solved in Equation (10) as the determined solutions of
the equivalent circuit.

In our work herein, the determined equations are programmed in
Matlab with the function solver to achieve controllable accuracy. The
transmission zeros and poles are considered as the input condition in
the numerical procedure. After element-values are solved, the coupling
coefficient could directly be retrieved by the well-know formulas given
in [6] or [8].

3. VERIFICATION AND TABULATED RESULT

In order to verify the synthesis results, we will at first directly derive the
transmission and refection parameters of the filter network in Figure 1
under the available element values reported in [8]. Next, these element
values are numerically solved with the determined synthesis solution
described above to demonstrate the performances of the filter while is
unable to be analyzed using the traditional synthesis design procedure.

3.1. Numerical Verification

First of all, the first row of element values was picked up from the
design table 10.1 in [8] and used as the values of those elements in the
filter network shown in Figure 1.

g1 = 0.95974, g2 = 1.42192, J1 = −0.21083, J2 = 1.11769 (11)

Since the coupling and resonating elements in Figure 1 have both
been treated as ideal models, the solution of the polynomial equations
in (10) will determine an ideal value of return loss. Corresponding
to the case which has considered physical effects with the actual
return loss of 20 dB in [8], the ideal return loss can be calculated as
46.053337 dB from Equation (3). With the known element values given
in Equation (11), the transmission zeros can be found as ±1.80000
while the transmission poles (or reflection zeros) at ±0.412530 (or
±0.935860). Thus the determined condition is fully constructed. The
condition is achieved without correlation to the synthesis process in
the unchanged circuit model shown in Figure 1. Under these above
solutions, the element values in Figure 1 can be numerically determined
as

g1 = 0.959738, g2 = 1.421912, J1 = −0.210822, J2 = 1.117680 (12)

Look at the two sets of element values comparatively, we can figure
out, numerical consistency between them has well been achieved with
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the resultant synthesis accuracy at maximal six digits. Furthermore,
the values listed in (12) hold a mathematical accuracy of seven digits.
The verification can be quantitatively completed by specifying the
return loss for the element value synthesis. The synthesis results are
given in the first and last rows of Table 2. For the two different sets
of element values with the fixed transmission zeros/plots but varied
in-band return losses (i.e., 20 dB and 55 dB), the two sets of simulated
frequency responses are plotted in Figure 2. So, the results given
in Figure 2 demonstrate that the presented synthesis procedure can
be executed to design a bandpass filter with differed pass/stop-band
specification by setting up the varied return loss, thereby extending
the flexibility in practical design.

Table 2. Element values of the quadruplet prototype in Figure 1.

Return loss (dB) g1 g2 J1 J2

20 1.816298 1.202716 −0.191801 0.781716
25 1.554765 1.290542 −0.185933 0.864406
30 1.359285 1.350906 −0.185665 0.935367
35 1.206123 1.389664 −0.189626 0.997723
40 1.082111 1.411671 −0.197186 1.054084
45 0.979239 1.421151 −0.208100 1.106818
50 0.892293 1.421874 −0.222352 1.158216
55 0.817696 1.417274 −0.240083 1.210617

3.2. Tabulated Results

Table 2 provides a list of tabulated results from the ideal synthesis
procedure under mathematical expression of transmission/reflection
responses as in Equation (3). Here, transmission zero/poles are
selected exactly the same as those described in chapter 3.1. This table
can be used for direct reference on differed pass-band specification of
high selective filter since the pole/zero locations are fixed in this table.
As for varied transmission zero locations as shown in [8], the similar
procedure in mathematics can be achieved to get a full set of design
data, and therefore it is not detailed here.

4. FABRICATION AND MEASURED RESULTS

In addition to numerical simulation, the validation of the synthesis
design is further preceded in this work by determining the entire
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dimension of an actual filter circuit and fabricating such a filter
on microstrip structure for experimental validation. To do it,
the commercial fullwave simulators can be utilized to establish the
relationship between physical dimensions and electrical parameters as
detailed in [7] and [9]. Now, let’s take into account the coupling matrix
of the filter network in Figure 1 as an example. In this case, all
altogether three types of coupling, i.e., electric, magnetic and hybrid
coupling, need to be considered in the filter design.

Shown in Figure 3 is the layout for a typical magnetic coupling
between two square ring resonators formed on the microstrip-line
structure. In this case, the coupling coefficient is mainly dependent on
the gap size of the square ring resonator. As the gap size is increased,
the first resonant frequency of the coupled resonator is split to the two
individual ones, and their distance becomes large.

Figure 3. Layout for numerical extraction of coupling coefficient
between the two coupled resonators for varied coupling gap.

Figure 4. Simulated frequency response for extracting coupling
coefficient of two magnetically coupled resonators.
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In this work, the initial resonant frequency is chosen in Agilent
LineCalcTM as 2.5 GHz and the microstrip feed line is selected to
have the characteristic impedance of 50 Ohm. Thereafter, actual
dimensions can be decided by executing the fullwave simulation on
its layout and they are marked in Figure 3. Now, let’s study the
coupling characteristics of magnetically coupled square ring resonators
[9]. First, the two feed lines are loosely and capacitively coupled to
the two individual resonators such that only the coupling between
the resonators dominates the locations of the two split resonant
frequencies [8].

Figure 4 shows the simulated transmission coefficient (S21-
magnitude) for three different gap sizes. As the gap size is reduced
from 3 mm to 2 mm and 1 mm, the distance between the two resonant
peaks are visibly moved far away with each other, thus indicating
the enhanced coupling degree. The pass-/stop-band specification
is synthesizable now directly by the element values, however, as

Figure 5. Layout for numerical extraction of external quality factor
(tapping location @ 2mm).

Figure 6. Simulated frequency responses for extracting quality factor.
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an auxiliary tuning parameter, the same procedure can be used
on the external quality factor to characterize its coupling degree
by working out the correlation between the tap position and the
resonator fractional bandwidth. Figure 5 is the physical layout for
numerical extraction of the coupling degree while Figure 6 illustrates
the simulated frequency response for varied tap locations.

In Figure 5, the feedline tapping location is at 1 mm down referred
to the brim of the square ring. However, when we vary the tapping
location, a varied resonance is shown as in Figure 6.

Figure 7. Extracted coupling coefficients versus gap size.

From Figure 6, it can be seen that as the tapping location rises up,
the transmission peak around the resonant frequency goes up while its
fractional bandwidth becomes slightly narrower. Thus, it causes the
quality factor to be increased.

Using the procedure described in [7], the coupling coefficient can
be extracted from the simulated results in Figure 4 under varied gap
size. Figure 7 plots the extracted coupling coefficient as a function of
gap size. Similarly, the external quality factor can be determined as a
function of the tapping locations as discussed in [9].

Now, let’s carry out the synthesis design of an actual bandpass
filter on microstrip-line structure. For an example, a filter is designed
with the specifications extracted from [9], i.e., central frequency (fc),
fractional bandwidth (FBW ), three sets of pole/zero locations (Tpole

and Tzero) and in-band return loss (RL).

fc = 2.5GHz, FBW = 6%
Tpole = ±0.931,±0.4; Tzero = ±2.3 RL = 46.05 dB

(13)
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Element values of the filter network in Figure 1 can be determined
via Equation (10) under the specifications in (13).

g1 = 0.949080, g2 = 1.350854, J1 = −0.117259, J2 = 1.011884 (14)
As all these element values are derived, their relevant coupling

matrix can be obtained as below

M =

⎡
⎢⎣

0 0.883170 0 −0.123550
0.883170 0 0.749069 0

0 0.749069 0 0.883170
−0.123550 0 0.883170 0

⎤
⎥⎦ (15)

As expected, Equation (15) has similar calculated results as
from [9]. The resultant matrix can be used to quantitatively describe
the filtering performance of the network in Figure 1.

Figure 8 is the layout of a bandpass filter to be designed. Using
the design curves in Figures 4 or 7 and Figure 6, all the dimensions
of this filter, such as ring length, tap location and three unequal gap
sizes, can be determined. The filter is designed on the RT/Duroid
6010 substrate with a thickness of 1.27 mm, permittivity of 10.8 and
loss tangent of 0.0023. As the overall dimensions of this filter are
decided, its performance is then simulated using Agilent ADS.

Figure 8. Layout of the designed microstrip-line quadruplet filter.

Figure 9. Photo of the fabricated filter.
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Figure 9 depicts the photograph of the fabricated microstrip-line
quadruplet bandpass filter. Figure 10 is the comparison between the
simulated and measured results. They are found in good agreement
with each other over the frequency range of 2.2 to 2.7 GHz. The central
frequency is about 2.45 GHz and the bandwidth is about 6.0% as can be
observed from both simulated and measured results, thus reasonably
achieving the specified ones as defined in Equation (13). Differed from
the lossless network based synthesis design, the in-band insertion loss
achieves 3.0 and 3.8 dB in simulation and experiment, respectively, due
to unexpected conductor, substrate and radiation losses in practical
implementation of narrowband filter.

Figure 10. Simulated and measured results of the quadruplet filter.

5. CONCLUSION

This paper has presented an alternative synthesis methodology to
numerically determine the element values of the folded quadruplet
filter network. Its related two-port network parameters are defined and
solved numerically according to the filter’s specifications in priority. In
order to annihilate redundancy in the over-determined coefficients, a
determined solution is proposed and verified to carry out this design
task with reasonably accurate element value table to the quadruplet
structure. Furthermore, the determined coupling matrix is utilized
to design a compact bandpass filter with the fractional bandwidth of
about 6.0% centered around 2.4∼2.5 GHz. In final, a filter is physically
fabricated for experimental validation of the presented methodology.
With this verified methodology, different type of physical coupling
structure such as in [11] and [12] could be attempted for implementing
with advanced cross-coupled filter function.
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