MULTI-RESOLUTION RETRIEVAL OF NON-MEASURABLE EQUIVALENT CURRENTS IN MICROWAVE IMAGING PROBLEMS — EXPERIMENTAL ASSESSMENT

P. Rocca

Electromagnetic Diagnostic Laboratory, ELEDIALab
Department of Information Engineering and Computer Science
University of Trento
Via Sommarive 14, Trento 38050, Italy

Abstract—In this paper, an approach based on a multi-scaling strategy for the reconstruction of the non-measurable components of equivalent current distributions is tested against experimental data. An extensive set of simulations is carried out considering single and multiple scatterers with homogeneous as well as inhomogeneous properties. Selected results are reported and discussed to show potentialities and limitations of the method.

1. INTRODUCTION

The retrieval of unknown targets embedded in inaccessible regions is a problem still actual and of interest [1] that need the development of efficient and reliable procedures for their application to real world problems [2, 3, 27–31]. Many strategies in microwave imaging reformulate the arising inverse scattering problem as the solution of an equivalent inverse source problem to determine either the profiles [4] or the dielectric properties [2–4] of unknown objects embedded in an inaccessible region. Despite the linearity of the inverse source problem with respect to the unknown equivalent current density within the investigation domain [5–7], the problem still remains ill-posed in the sense of Hadamard [11]. As a matter of fact, the presence of non-radiating, or non-measurable contributions, causes the non-uniqueness of the equivalent source [9, 10]. As regards the null space in source type integral equations, several theoretical studies have been reported in the scientific literature [11–13]. However, only a few techniques have

Corresponding author: P. Rocca (paolo.rocca@disi.unitn.it).
been proposed \cite{3,4} to recover the contribute of the non-measurable currents from measured field data. The lack of information on these components results in too inaccurate reconstructions that generally suffer from a strong low-pass effect \cite{2,14}. Since the achievable spatial resolution is strictly related to the number of basis functions modeling the unknowns, the higher is the spatial resolution the greater is the number of basis functions required to obtain accurate reconstructions. Consequently, the dimension of the null space turns out to be very large \cite{14} due to the band-limited nature of the scattered field \cite{18}. Moreover, the number of local minima grows, severely affecting the potentialities of the inversion procedures.

In order to avoid these drawbacks, an iterative multi-resolution method for the reconstruction of the non-measurable components of the equivalent current density has been recently presented in \cite{19}. The key features of the approach, called Iterative Multi-Scaling Approach for Non-Radiating currents (IMSA-NR), are the ability to reduce the dimension of the kernel space of the scattering operator and to improve the accuracy of the reconstruction. In this work, the IMSA-NR is further assessed by considering experimental data acquired in a laboratory controlled environment.

The outline of the paper is as follows. The inverse scattering problem is mathematically formulated in Section 2 where the multi-resolution procedure is briefly summarized, as well. A representative set of results is shown in Section 3 to assess the effectiveness of the IMSA-NR when dealing with experimental data. Eventually, some conclusions are drawn and possible developments are discussed (Section 4).

2. MATHEMATICAL FORMULATION

Let us consider a 2D microwave imaging system where a set of \(V \) known probing source generating TM-polarized fields (called incident fields), \(E_{\text{inc}}^v(x,y) = E_{\text{inc}}^v(x,y)\hat{z}, \ v = 1, \ldots, V \), illuminates an investigation domain \(\Gamma_{\text{inv}} \). The scattered fields, \(E_{\text{scat}}^v(x,y), \ v = 1, \ldots, V \), are collected on a set of \(M^{(v)} \) electromagnetic sensors located in an external observation domain \(\Gamma_{\text{obs}} \). The IMSA presented in \cite{20,32–36} considers a succession of \(s = 1, \ldots, S \) steps aimed at enhancing the reconstruction accuracy within a Region-of-Interest (RoI) belonging to \(\Gamma_{\text{inv}} \) where the scatterer is supposed to be located. With reference to the \(s \)-th step of the multi-scaling procedure, the unknown contrast function, \(\tau(x,y) \), and equivalent current densities, \(J_{eq}^v(x,y), \ v = 1, \ldots, V \), are represented through a linear combination of rectangular basis functions (\(\Omega_{n(i)}(x,y) \) and \(\Upsilon_{n(i)}(x,y) \), respectively)
having different resolution such that

$$\tau(x, y) = \sum_{i=1}^{I} \sum_{n(i)=1}^{N(i)} \tau(x_{n(i)}, y_{n(i)}) \Omega_{n(i)}(x, y), \quad I = s$$

(1)

$$J_{eq}^v(x, y) = \sum_{i=1}^{I} \sum_{n(i)=1}^{N(i)} J_{eq}^v(x_{n(i)}, y_{n(i)}) \Upsilon_{n(i)}(x, y), \quad I = s$$

(2)

where the index i represents the spatial resolution level, $i = 1, \ldots, I$, $I = s$ being the finer resolution and $N(i)$ is the number of partition sub-domains at the i-th resolution level. To solve the inverse problem at hand, the Data and State equations are evaluated at each step of the multi-resolution approach within the RoI where a synthetic zoom takes place [21] and the dielectric properties of the remaining part of Γ_{inv} are set to those of the background. More specifically, the Lippmann-Schwinger integral equations [22] are expressed as

$$E_{\text{scat}}^v(x_m, y_m) = \sum_{n(i)=1}^{N(i)} J_{eq}^v(x_{n(i)}, y_{n(i)}) G_{2d}^{\text{ext,}v}(A_{n(i)}, \rho_{n(i), m})$$

(3)

\[\forall (x_m, y_m) \in \Gamma_{\text{obs}}; \quad m = 1, \ldots, M^{(v)}; \quad v = 1, \ldots, V \]

with $i = I = s$ and

$$\tau(x_{n(i)}, y_{n(i)}) E_{\text{inc}}^v(x_{n(i)}, y_{n(i)}) = J_{eq}^v(x_{n(i)}, y_{n(i)}) - \tau(x_{n(i)}, y_{n(i)})$$

$$\left\{ \sum_{u(i)=1}^{N(i)} J_{eq}^v(x_{u(i)}, y_{u(i)}) G_{2d}^{\text{int,}v}(A_{u(i)}, \rho_{u(i), n(i)}) \right\}$$

(4)

\[\forall (x_{n(i)}, y_{n(i)}) \in \Gamma_{inv}; \quad v = 1, \ldots, V \]

where the unknown contrast function is defined as

$$\tau(x, y) = \frac{\tilde{\varepsilon}(x, y)}{\varepsilon_0} - 1,$$

(5)

$$\tilde{\varepsilon}(x, y) = \varepsilon_0 \left\{ \varepsilon_R(x, y) - j \frac{\sigma(x, y)}{\varepsilon_0} \right\}$$

being the complex permittivity. Moreover, ε_R and σ are the relative permittivity and conductivity, respectively, and ε_0 is the permittivity of the free-space. In (3) and (4), $G_{2d}^{\text{ext,}v}$ and $G_{2d}^{\text{int,}v}$ denote the discretized Green’s operators [20]. Moreover, $A_{n(i)}$ (or $A_{u(i)}$) is the area of the n-th (or u-th) cell at the i-th resolution level, $\rho_{n(i), m} = \sqrt{(x_{n(i)} - x_m)^2 + (y_{n(i)} - y_m)^2}$ and $\rho_{u(i), n(i)} = \sqrt{(x_{u(i)} - x_{n(i)})^2 + (y_{u(i)} - y_{n(i)})^2}$. It is well known [6] that
the equivalent current densities $J_{eq}^v(x, y)$ can be expressed through the linear combination of two different contributions

$$J_{eq}^v(x, y) = \sum_{i=1}^{I} \left\{ \sum_{n(i)=1}^{R(i)} \theta_{n(i)}^v \Phi_{n(i)}^v (x, y) + \sum_{n(i)=R(i)+1}^{N(i)} \phi_{n(i)}^v \Phi_{n(i)}^v (x, y) \right\}$$ \hspace{1cm} (6)

namely the minimum norm (MN) or non-radiating current density and the non-measurable (NR) current density where in (2) it is $\{J_{eq}^v(x_n(i), y_n(i))\} = \{\theta_{n(i)}^v\} \cup \{\phi_{n(i)}^v\}$ and $\{\Phi_{n(i)}^v(x, y)\} = \{\Theta_{n(i)}^v(x, y)\} \cup \{\Phi_{n(i)}^v(x, y)\}$. The MN components of the equivalent source generate the scattered fields in the observation domain Γ_{obs}. Their coefficients, $\theta_{n(i)}^v$, can be defined at each step of the multi-resolution procedure through a Singular Value Decomposition (SVD) of the Green’s operator by solving Eq. (3). More in detail and according to the guidelines in [7], these coefficients are given by

$$\theta_{n(i)}^v = \frac{1}{\xi_{n(i)}^v} \left\{ \sum_{m=1}^{M(v)} \left[U_m^v(x, y) \right]^* E_{\text{scat}}^v(x_m, y_m) \right\}, \quad n(i) = 1, \ldots, R(i)$$ \hspace{1cm} (7)

where $\xi_{n(i)}^v, n(i) = 1, \ldots, R(i)$, is the set of non trivial singular values, $R(i)$ being the rank of the Green’s operator, and $\{U_m^v(x, y)\}$ is an orthonormal system of eigenvectors obtained from the SVD. The basis functions $\{\Theta_{n(i)}^v(x, y)\}, n(i) = 1, \ldots, R(i)$, and $\{\Phi_{n(i)}^v(x, y)\}, n(i) = R(i) + 1, \ldots, N(i)$, used in (6) are two sets of orthogonal eigenvectors still defined through the SVD [7].

In order to compute the non-radiating coefficients, $\phi_{n(i)}^v, n(i) = R(i) + 1, \ldots, N(i)$, as well as the coefficients of the contrast function, $\tau(x_n(i), y_n(i)), n(i) = 1, \ldots, N(i)$, the following cost functional, $\Psi^{(s)} = \frac{\Omega^{(s)}}{C^{(s)}}$, is minimized at each step of the multi-resolution procedure where

$$\Omega^{(s)} = \sum_v \sum_{j=1}^{I} \sum_{n(j)=1}^{N(j)} \left\{ w(x_n(j), y_n(j)) \left| \tau \left(x_n(j), y_n(j)\right) \right| E_{\text{inc}}^v \left(x_n(j), y_n(j)\right) \right\}$$

$$- \sum_{t(j)=1}^{R(j)} \theta_{t(j)}^v \Theta_{t(j)}^v \left(x_n(j), y_n(j)\right) + \sum_{t(j)=R(j)+1}^{N(j)} \phi_{t(j)}^v \Phi_{t(j)}^v \left(x_n(j), y_n(j)\right)$$

$$+ \tau \left(x_n(j), y_n(j)\right) \sum_{u(j)=1}^{N(j)} \left(\sum_{t(j)=1}^{R(j)} \theta_{t(j)}^v \Theta_{t(j)}^v \left(x_u(j), y_u(j)\right) \right)$$
\[+ \sum_{l(j) = R(j) + 1}^{N(j)} \phi_{l(j)}^v \Phi_{l(j)}^v (x_{u(j)}, y_{u(j)}) \right] G_{2d}^v \left(A_{u(j)}, \rho_{u(j), n(j)} \right)^2 \right\} \quad (8) \]

and \(C^{(s)} \) is the normalization coefficient

\[C^{(s)} = \sum_{v=1}^{V} \sum_{j=1}^{I} \sum_{n(j)=1}^{R(j)} \left\{ w(x_{n(j)}, y_{n(j)}) \right\} G_{2d}^v \left(A_{u(j)}, \rho_{u(j), n(j)} \right)^2 \right\} . \quad (9) \]

Moreover, \(w \) is a weighting function defined as

\[w(x_{n(j)}, y_{n(j)}) = \begin{cases} 0 & \text{if } (x_{n(j)}, y_{n(j)}) \notin \text{RoI} \\ 1 & \text{if } (x_{n(j)}, y_{n(j)}) \in \text{RoI} \end{cases} \quad (10) \]

The multi-step process stops \((s = S_{\text{end}})\) when a stationary condition based on the analysis of qualitative reconstruction parameters [19] is achieved. To minimize the functional \(\Psi^{(s)} \), a well assessed conjugate gradient approach based on an alternate minimization strategy [23] is considered.

3. EXPERIMENTAL VALIDATION

In this section, numerical results concerned with the inversion of experimental aspect-limited data as reported and analyzed. The first part of this section deals with the reconstruction of homogeneous lossless as well as lossy dielectric targets [24]. The reconstruction of inhomogeneous objects [25] is discussed in the second part. The scattering data have been made available thank to the courtesy of the Institute Fresnel, Marseille, France. A thoroughly description of the experimental setup can be found in [24] and [25, 37].

In order to quantify the effectiveness of the proposed approach and to compare with the single step \((\text{bare})\) procedure [7], the location error, \(\delta \), and the occupation area error, \(\Delta \), are defined as

\[\delta = \frac{\sqrt{\left[x_{\text{opt}} - x_{\text{ref}} \right]^2 + \left[y_{\text{opt}} - y_{\text{ref}} \right]^2}}{\lambda} \quad (11) \]

and

\[\Delta = \left\{ \frac{L_{\text{opt}} - L_{\text{ref}}}{L_{\text{ref}}} \right\} \times 100 \quad (12) \]

where the apexes “opt” and “ref” mean retrieved and actual quantities, respectively. Moreover, \((x_c, y_c)\) is the position of the barycenter of the scatterer and \(L \) is its radius.
3.1. Homogeneous Scatterers

The first experiment deals with the reconstruction of a single lossless dielectric cylinder (test case “dielTM_dec8_f.exp”) which is supposed to lie within a square region of side 30 cm. The object is located at \((x_c^{\text{ref}} = 0.0, x_c^{\text{ref}} = -30.0)\) mm and is characterized by a contrast value equal to \(\tau(x, y) = 2.0 \pm 0.3\). Fig. 1 shows the reconstructions of the
Figure 1. Dataset “dielTM.dec8f.exp” — Benchmark “Mar-seille” [21]. Object function reconstruction — Retrieved distributions with the “bare” procedure (left) and the IMSA-NR approach at $s = S_{\text{end}}$ (right). Working frequency: (a)(b) $f = 1 \text{GHz}$, (c)(d) $f = 2 \text{GHz}$, (e)(f) $f = 3 \text{GHz}$, (g)(h) $f = 4 \text{GHz}$, (i)(l) $f = 5 \text{GHz}$, (m)(n) $f = 6 \text{GHz}$.
object function of the bare approach (left column) and the IMSA-NR (right column). Six different illumination frequencies in the range [1; 6] GHz with step 1 GHz have been used. At each frequency, \(V = 36 \) different views have been considered and the data have been collected on \(M^{(v)} = 49 \) measurement points [24]. The side of the investigation domain expressed in wavelengths varies from one \(\lambda \) at the lowest frequency up to 6\(\lambda \) at the highest frequency. In each simulation, \(\Gamma_{\text{inv}} \) has been subdivided into \(N = 400 \) and \(N(i) = 100, i = 1, \ldots, I \), cells for the bare and multi-resolution approach, respectively.

![Graph](image)

Figure 2. Dataset “\textit{die1TM_dec8f_exp}” — Benchmark “Mar- seille” [21]. Qualitative error figures for the reconstructions of Fig. 1: (a) location error \(\delta \) and (b) occupation area error \(\Delta \).
Figure 3. Dataset “dielTM_dec8f.exp” — Benchmark “Mar- seille” [21]. Equivalent current density reconstruction — Retrieved distributions with the “bare” procedure [(a)–(c), (g)–(i)] and the IMSA-NR approach at $s = S_{\text{end}}$ [(d)–(f), (l)–(n)]. Working frequency: (a)(d) $f = 1\,\text{GHz}$, (b)(e) $f = 2\,\text{GHz}$, (c)(f) $f = 3\,\text{GHz}$, (g)(l) $f = 4\,\text{GHz}$, (h)(m) $f = 5\,\text{GHz}$, (i)(n) $f = 6\,\text{GHz}$.

```
<table>
<thead>
<tr>
<th>J_{\text{eqTOT}}(x,y)</th>
<th>J_{\text{eqTOT}}(x,y)</th>
<th>J_{\text{eqTOT}}(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
<tr>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
<tr>
<td>(l)</td>
<td>(m)</td>
<td>(n)</td>
</tr>
</tbody>
</table>
```
As it can be observed (Fig. 1), the values of the object functions retrieved with the $IMSA$-NR method are much closer to the actual ones and, thanks the multi-scaling procedure, the scatterer is better localized within the investigation domain Γ_{inv}, where the actual position of the scatterer is indicated by the dashed line. This fact is further confirmed by the values of the error figures (11) and (12) in Fig. 2(a) and Fig. 2(b) pointing out that the $IMSA$-NR solutions are definitely better than those retrieved with the bare procedure. Although some location errors (mainly in the high frequencies) for the $IMSA$-NR are higher than those of the bare method [Fig. 2(a)], it should be noted that the corresponding occupation area errors of the bare procedure are one order of magnitude higher than those of the $IMSA$-NR [Fig. 2(b)]. Consequently, although the position of the barycenter is better estimated by the bare method, the qualitative reconstructions turn out being worse as compared to the results of the $IMSA$-NR.

The reconstructions of the equivalent current densities for the experiments in Fig. 1 are given in Fig. 3. On one hand, it is worth noting that the solutions at the lower frequencies are better than those retrieved at higher frequencies. On the other hand, the $IMSA$-NR approach always outperforms the bare procedure in terms of retrieved current distributions as well as absence of noise and artifacts in the background. As far as the minimization of Ψ is concerned, the value of the cost function at each iteration is reported in Fig. 4 for the data.

![Figure 4](image_url)

Figure 4. Dataset “dielTM_dec8f.exp” — Benchmark “Marseille” [21] ($f = 4$ GHz) — Behavior of the cost function value for the “bare” procedure and the $IMSA$-NR approach.
collected at 4 GHz, where \(S_{\text{end}} = 4 \). In the simulations, \(K = 2000 \) iterations are considered for the bare procedure and \(K^{(s)} = 2000 \) iterations are used at each step of the multi-resolution strategy, \(i = 1, \ldots, I \). For the sake of completeness, some computational indexes for the results related to Fig. 4 are reported in Table 1 where \(U \) is the number of problem unknowns, \(K_{\text{tot}} \) is the total number of iterations, \(T_{\text{tot}} \) and \(T_k \) is the total CPU time and that required for a single iteration, respectively. The numerical simulations have been run on a 3 GHz PC with 1 GB of RAM.

Figure 5. Dataset “twodielTM_8f.exp” — Benchmark “Marneille” [21]. Object function reconstruction — Retrieved distributions with the IMSA-NR approach at \(s = S_{\text{end}} \). Working frequency: (a) \(f = 1 \) GHz, (b) \(f = 2 \) GHz, (c) \(f = 3 \) GHz, (d) \(f = 4 \) GHz.
Table 1. Dataset “dielTM_dec8f.exp” — Benchmark “Marseille” [24] ($f = 4$ GHz). Computational Issues — Values of the computational indexes in correspondence with the bare procedure and the IMSA-NR approach.

<table>
<thead>
<tr>
<th></th>
<th>Bare</th>
<th>IMSA-NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>2.96×10^4</td>
<td>7.4×10^3</td>
</tr>
<tr>
<td>K_{tot}</td>
<td>2000</td>
<td>8000</td>
</tr>
<tr>
<td>S_{end}</td>
<td>$-$</td>
<td>4</td>
</tr>
<tr>
<td>T_k [sec]</td>
<td>6.08×10^{-1}</td>
<td>2.64×10^{-2}</td>
</tr>
<tr>
<td>T_{tot} [sec]</td>
<td>1224.3</td>
<td>214.4</td>
</tr>
</tbody>
</table>

In the second experiment, the data set “twodielTM_8f.exp” is taken into account. Two objects identical to that of the previous example are embedded within the region under test. The distance between the two barycenters is $d = 90$ mm and the data have been collected as for the first experiment. The reconstructed object functions obtained through the IMSA-NR approach are shown in Fig. 5. The images are concerned with the inversions of the data at $f = [1, 2, 3, 4]$ GHz. The best reconstruction from both a quantitative and qualitative point of view is achieved at 3 GHz [Fig. 5(c)]. It is also interesting to notice that at lower frequencies the reconstructions are characterized by a low-pass behavior [Fig. 5(a)], while sharper edges result at higher frequencies. Moreover, the distance between the barycenters is over-estimated at $f = 2$ GHz [Fig. 5(b)] and under-estimated at $f = 4$ GHz [Fig. 5(d)].

The reconstruction of a lossy target is performed in the third experiment (“rectTM_cent.exp”). The rectangular cylinder is located at the center of the investigation domain. It has been illuminated by a TM-polarized wave [24] at $f = 4$ GHz. The dimensions of the scatterer in wavelengths turns out being equal to $0.17\lambda \times 0.34\lambda$. Fig. 6 gives the reconstructions of the object function [Figs. 6(a)–(b)] and the equivalent current density [Figs. 6(c)–(d)] from the bare procedure [Figs. 6(a)–(c)] and the IMSA-NR approach [Figs. 6(b)–(d)]. Although some artifacts are present in the background [see Figs. 6(b) and 6(d)], the enhancement in the reconstruction is non-negligible.
Figure 6. Dataset “rectTM_cent.exp” — Benchmark “Marseille” [21] ($f = 4$ GHz) — Reconstruction of (a)(b) the object function and of (c)(d) the equivalent current density retrieved with (a)(c) the “bare” procedure and (b)(d) the IMSA-NR approach.
Figure 7. Dataset “FoamDielExtTM” — Benchmark “Marseille” [22]. Object function reconstruction — Retrieved distributions with the “bare” procedure (left) and the IMSA-NR approach at $s = S_{\text{end}}$ (right). Working frequency: (a)(b) $f = 2$ GHz, (c)(d) $f = 3$ GHz, (e)(f) $f = 4$ GHz, (g)(h) $f = 5$ GHz.
3.2. Inhomogeneous Scatterers

In this section, the reconstruction of inhomogeneous scatterers is dealt with. Two different experiments are taken into account, namely the data set “FoamDielExtTM” and “FoamDielIntTM” [25]. Two scatterers of radius $L_1 = 80 \text{mm}$ and $L_2 = 30 \text{mm}$ and contrast value equal to $\tau_1(x, y) = 0.45$ and $\tau_2(x, y) = 2.0$ are considered. In the first experiment, the objects are placed one close to the other (Fig. 7 — dashed line). In the second one, the smaller scatterer is located within the bigger one (Fig. 8 — dashed line). For each illumination frequency, $V = 8$ different views and the same number

![Figure 8](image-url)

Figure 8. Dataset “FoamDielIntTM” — Benchmark “Marseille” [22]. Object function reconstruction — Retrieved distributions with the IMSA-NR approach at $s = S_{\text{end}}$. Working frequency: (a) $f = 2 \text{GHz}$, (b) $f = 3 \text{GHz}$, (c) $f = 4 \text{GHz}$, (d) $f = 5 \text{GHz}$.
of measurement points as for the previous examples \((M^{(v)} = 49)\) are used. Moreover, the dimension as well as the discretization of \(\Gamma_{\text{inv}}\) are set to those considered for homogeneous scatterers. As far as the test case “FoamDielExtTM” is concerned, the distributions of the object function retrieved by means of the bare procedure and the IMSA-NR approach are compared in Fig. 7 where \(f \in [2; 5] \text{ GHz}\). Whatever the case, the two objects can be clearly distinguished both in terms of dimension as well as contrast function value when using the IMSA-NR. The same cannot be stated for the reconstructions with the bare approach. As a matter of fact, many artifacts are present in Fig. 7(a) and Fig. 7(e) when \(f = 2 \text{ GHz}\) and \(f = 4 \text{ GHz}\), respectively.

Finally, the IMSA-NR approach is tested against the experimental data set “FoamDielIntTM” and the solutions obtained at the frequencies \(f = [2, 3, 4, 5] \text{ GHz}\) are given in Fig. 8. Although the two objects can be identified in all the reconstructions, the scatterers are better localized and the best result is obtained when working at 4 GHz.

4. CONCLUSIONS

In this paper, the IMSA-NR approach for the solution of inverse scattering problems has been validated against experimental data. The results have confirmed the effectiveness of the multi-resolution approach as compared to the single step method. In all the reported examples, the reconstructions of the IMSA-NR resulted quite accurate both in terms of qualitative and quantitative imaging.

REFERENCES

4. Habashy, T. M., E. Y. Chow, and D. G. Dudley, “Profile inversion using the renormalized source-type integral equation

