PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 4 > pp. 263-271

AN ENHANCED BINARY ANTI-COLLISION ALGORITHM OF BACKTRACKING IN RFID SYSTEM

By X. Shi, X.-W. Shi, Q. Huang, and F. Wei

Full Article PDF (86 KB)

Abstract:
On the base of the binary search algorithm of backtracking, an enhanced binary anti-collision search algorithm for radio frequency identification (RFID) system is presented in this paper. With the method of transferring the collision bit in place of the ID of the tag, the proposed algorithm can improve identification efficiency significantly. Mathematical simulation result shows that compared with the binary search algorithm, dynamic binary search algorithm and the binary search algorithm of backtracking, the proposed algorithm outperforms the three algorithms previous when handling multiple RFID tags simultaneously.

Citation:
X. Shi, X.-W. Shi, Q. Huang, and F. Wei, "An Enhanced Binary Anti-Collision Algorithm of Backtracking in RFID System," Progress In Electromagnetics Research B, Vol. 4, 263-271, 2008.
doi:10.2528/PIERB08012304
http://www.jpier.org/pierb/pier.php?paper=08012304

References:
1. Finkenzeller, K., RFID Handbook: Radio-frequency Identification Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd Ed., John Wiley, New York, 2003.

2. Jiang, L.-F., G.-Z. Lu, and Y.-W. Xin, "Research on anti-collision algorithm in radio frequency identification system," Computer Engineering and Applications, Vol. 15, 29-32, 2007.

3. Shih, D., P.-L. Sun, D.-C. Yen, and S.-M. Huang, "Taxonomy and survey of RFID anti-collision protocols," Computer and Communications, Vol. 29, No. 11, 2150-2166, 2006.
doi:10.1016/j.comcom.2005.12.011

4. Law, C., K. Lee, and K. Y. Siu, Efficient memory-less protocol for tag identification, Proc. 4th International Workshop on DIALM, 75-84, Boston, Massachusetts, ISA, 2000.

5. Du, H.-T., K.-L. Xu, and W.-L. Wang, "An anti-collision algorithm based on binary-tree searching of backtracking," Journal of Yunnan University, Vol. 28, 133-136, 2006.

6. Liu, L.-A., Z.-H. Xie, J.-T. Xi, and S.-L. Lai, An improved anti-collision algorithm in RFID system, Mobile Technology, Applications and Systems, 2005 2nd International Conference, 2005.

7. Ju, W.-C. and C.-F. Yu, "An anti-collision RFID algorithm based on the dynamic binary," Journal of Fudan University, Vol. 44, No. 1, 46-50, 2005.

8. Dai, X.-W., C.-H. Liang, B.Wu, and J.-W. Fan, "Novel dual-band bandpass filter design using microstrip open-loop resonators," Journal of Electromagnetic Waves and Application, Vol. 22, No. 2, 219-225, 2008.
doi:10.1163/156939308784160712

9. Wu, B., B. Li, T. Su, and C. H. Liang, "Equivalent-circuit analysis and lowpass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Application, Vol. 20, No. 14, 1943-1953, 2006.
doi:10.1163/156939306779322765

10. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
doi:10.2528/PIER06102502

11. Chen, Z.-X., X.-W. Dai, and C.-H. Liang, "Novel dual-mode dual-band bandpass filter using double square-loop structure," Progress In Electromagnetics Research, Vol. 77, 409-416, 2007.
doi:10.2528/PIER07082803

12. Zhao, L.-P., X.-W. Dai, Z.-X. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
doi:10.2528/PIER07090501

13. Xue, W., C.-H. Liang, X.-W. Dai, and J.-W. Fan, "Design of miniature planar dual-band filter with 0 degree feed structures," Progress In Electromagnetics Research, Vol. 77, 493-499, 2007.
doi:10.2528/PIER07090502

14. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

15. Fan, Z., S. Qiao, H.-F. Jiang Tao, and L.-X. Ran, "Signal descriptions and formulations for long range UHF RFID readers," Progress In Electromagnetics Research, Vol. 71, 109-127, 2007.
doi:10.2528/PIER07021501

16. Kim, D.-Y., H.-G. Yoon, B.-J. Jang, and J.-G. Yook, "Interference analysis of UHF RFID systems," Progress In Electromagnetics Research B, Vol. 4, 115-126, 2008.

17. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.

18. Zhang, Y.-Q. and Z.-S. Wu, "The calculation of angular side-play amount produced by radiation pressure acting on the space object," Progress In Electromagnetics Research B, Vol. 4, 67-77, 2008.

19. Liang, C.-H., L. Li, and X.-J. Dang, "Inequality condition for grating lobes of planar phased array," Progress In Electromagnetics Research B, Vol. 4, 101-113, 2008.

20. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

21. Zhang, X.-C., Z.-Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

22. Zhao, X. W., C.-H. Liang, and L. Liang, "Multilevel fast multipole algorithm for radiation characteristics of shipborne antennas above seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
doi:10.2528/PIER08012003


© Copyright 2010 EMW Publishing. All Rights Reserved