PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 6 > pp. 307-336

CHARACTERISTIC BASIS FUNCTION METHOD FOR ITERATION-FREE SOLUTION OF LARGE METHOD OF MOMENTS PROBLEMS

By R. Mittra and K. Du

Full Article PDF (653 KB)

Citation:
R. Mittra and K. Du, "Characteristic Basis Function Method for Iteration-Free Solution of Large Method of Moments Problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

References:
1. Coifman, R., V. Roklin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propag. Mag., Vol. 35, 7-12, 1993.
doi:10.1109/74.250128

2. Song, J., C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855

3. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave and Optical Technology Letters, Vol. 7, 790-795, 1994.
doi:10.1002/mop.4650071707

4. Canning, F. X., "Solution of IML form of moment method problems in 5 iterations," Radio Sci., Vol. 30, No. 5, 1371-1384, 1995.
doi:10.1029/95RS01457

5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-412, 1982.
doi:10.1109/TAP.1982.1142818

6. Thiele, G. A. and G. A. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, 551-558, 1975.

7. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, New York, 1998.

8. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
doi:10.1002/mop.10685

9. Prakash, V. V. S. and R. Mittra, "Characteristic Basis Function Method: A new technique for efficient solution of Method of Moments matrix equation," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.11085

10. Kwon, S. J., K. Du, and R. Mittra, "Characteristic Basis Function Method: A numerically efficient technique for analyzing microwave and RF circuits," Microwave and Optical Technology Letters, Vol. 38, No. 6, 444-448, 2003.
doi:10.1002/mop.11247

11. Yeo, J., V. V. S. Prakash, and R. Mittra, "Efficient analysis of a class of microstrip antennas using the Characteristic Basis Function Method (CBFM)," Microwave and Optical Technology Letters, Vol. 39, No. 6, 456-464, 2003.
doi:10.1002/1098-2760(20000820)26:4<270::AID-MOP20>3.0.CO;2-C

12. Suter, E. and J. R. Mosig, "A subdomain multilevel approach for the efficient MoM analysis of large planar antennas," Microwave and Optical Technology Letters, Vol. 26, No. 4, 270-277, 2000.

13. Catedra, F., et al., "Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions," Antennas and Wireless Propagation Letters, Manuscript# AWPL 0307, 2007.

14. Garcia, E., C. Delgado, F. S. De Adana, and R. Mittra, "Development of an efficient rigorous technique based on the combination of CBFM and MLFMA to solve very large electromagnetic problems," Electromagnetics in Advanced Applications, ICEAA, 579-582, 2007.

15. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast solution of large-scale antenna problems using the Characteristic Basis Function Method and the adaptive cross approximation algorithm," IEEE Transactions on Antenna and Propagation, submitted.

16. Laviada, J., M. R. Pino, F. Las-Heras, and R. Mittra, Mitigation of the truncation problem in the Characteristic Basis Function Method via a novel cell-stretching approach, IEEE Antennas and Propagation and URSI Meeting, to appear, San Diego, CA, 2008.

17. Laviada, J., M. R. Pino, F. Las-Heras, and R. Mittra, Efficient calculation of the reduced matrix in the Characteristic Basis Functions Method, IEEE Antennas and Propagation and URSI Meeting, to appear, San Diego, CA, 2008.

18. Delgado, C., E. Garcıa, F. Catedra, and R. Mittra, Hierarchical scheme for the application of the Characteristic Basis Function Method based on a multilevel approach, IEEE Antennas and Propagation and URSI Meeting, to appear, San Diego, CA, 2008.

19. Tiberi, G., E. Lucente, A. Monorchio, G. Manara, and R. Mittra, A characteristic Basis Function Method (CBFM) for analyzing the EM scattering by large structures having slots, IEEE Antennas and Propagation and URSI Meeting, to appear, San Diego, CA, 2008.

20. Ozgun, O., R. Mittra, M. Kuzuoglu, and , "Characteristic Basis Finite Element Method (CBFEM) --- A non-iterative domain decomposition finite element algorithm for solving electromagnetic scattering problems," IEEE Antennas and Propagation and URSI Meeting, to appear, 2008.

21. Farahat, N., R. Mittra, and N. Huang, "Modeling large phased array antennas using the finite difference time domain method and the characteristic basis function approach," Applied Computational Electromagnetics Society Journal, Special Issue on Phased and Adaptive Array Antennas, Vol. 21, No. 3, 218-225, 2006.

22. Mittra, R., H. E. Abd-El-Raouf, and N. Huang, "A serial-parallel FDTD approachfor modeling the coupling problem between two large arrays," Applied Computational Electromagnetics Society Journal, Special Issue on Phased and Adaptive Array Antennas, Vol. 21, No. 3, 267-275, 2006.

23. Kuzuoglu, M. and R. Mittra, Fast solution of electromagnetic boundary value problems by the characteristic basis functions/FEM approach, IEEE Antennas & Propagation Society International Symposium/URSI, 1071-1075, Columbus, Ohio, 2003.

24. Yeo, J. and R. Mittra, Numerically efficient analysis of microstrip antennas using the Characteristic Basis Function Method (CBFM), IEEE Antennas & Propagation Society International Symposium/URSI, Vol. 4, 85-88, Columbus, Ohio, 2003.

25. Mittra, R. and V. V. S. Prakash, The Characteristic Basis Function Method (CBFM) --- An alternative to FMM for a class of antenna and scattering problems, IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

26. Prakash, V. V. S., RCS computation over a frequency band using the characteristic basis and model order reduction method, IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

27. Prakash, V. V. S. and R. Mittra, Fast computation of radar cross section for multiple incident angles by using Characteristic Basis Functions (CBFs), IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

28. Su, T., L. C. Ma, N. Farahat, and R. Mittra, Modeling of a large slotted waveguide phased array using the FDTD and Characteristic Basis Function (CBF) approaches, IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

29. Tiberi, G., A. Monorchio, G. Manara, and R. Mittra, Hybridizing asymptotic and numerically rigorous techniques for solving electromagnetic scattering problems using the Characteristics Basis Functions (CBFs), IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

30. Mittra, R., Solution of large array and radome problems using the characteristic basis function approach, IEEE Antennas & Propagation Society International Symposium/URSI, Columbus, Ohio, 2003.

31. Sun, Y., C. H. Chan, R. Mittra, and L. Tsang, Characteristic Basis Function Method for solving large problems arising in dense medium scattering, IEEE Antennas & Propagation Society International Symposium/URSI, Vol. 2, 1068-1071, Columbus, Ohio, 2003.

32. Mittra, R., J. Yeo, and V. V. S. Prakash, Efficient generation of Method of Moments matrices using the characteristic function method, IEEE Antennas & Propagation Society International Symposium/URSI, Vol. 2, 1068-1071, Columbus, Ohio, 2003.

33. Mittra, R., A proposed new paradigm for solving scattering problems involving electrically large objects using the Characteristic Basis Functions Method, Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), 621-624, Turin, Italy, 2003.

34. Chan, K. F., K. W. Lam, C. H. Chan, and R. Mittra, Modeling of microstrip reflectarrays using the characteristic basis function approach, 2004 International Symposium on Electromagnetic Theory (URSI-EMT’04), May 23-27, Pisa, Italy, 2004.

35. Tiberi, G., S. Rosace, A. Monorchio, G. Manara, and R. Mittra, "Electromagnetic scattering from large faceted conducting bodies by using analytically derived characteristic basis functions," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 290-293, 2004.

36. Mittra, R., T. Zhao, J. Yeo, and S. Koksoy, Solution of large radiation and scattering problems without iteration using the Fast Matrix Solver (FMS) and the Characteristic Basis Function Method (CBFM), 2004 IEEE-AP-S International Symposium and USNC/URSI National Radio Science Meeting, 33, APS/URSI 2004 Contents, Monterey, CA, 2004.

37. Mittra, R. and V. V. S. Prakash, "The Characteristic Basis Function Method: A new technique for fast solution of radar scattering problem," Special Issue on CEM of Computer Modeling in Engineering & Sciences, Vol. 5, No. 5, 435-442, 2004.

38. Ma, J. F. and R. Mittra, Analysis of scattering characteristics of electrically large objects using a CBFM-based procedure, 2005 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (AP-S’05), Vol. 3A, 105-108, Washington DC, 2005.

39. Farahat, N., R. Mittra, and N. T. Huang, Modeling large phased array antennas using the finite difference time domain method and the characteristic basis function approach, The ACES 2006 Conference, Miami, Florida, 2006.

40. Delgado, C., R. Mittra, and F. Catedra, Analysis of fast numerical techniques applied to the Characteristic Basis Function Method, The IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, 4031-4034, Albuquerque, New Mexico, 2006.

41. Lucente, E., A. Monorchio, and R. Mittra, Generation of characteristic basis functions by using sparse MoM impedance matrix for large scattering and radiation problems, IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, Albuquerque, New Mexico, 2006.
doi:10.1109/TAP.2006.880706

42. Tiberi, G., A. Monorchio, G. Manara, and R. Mittra, "A spectral domain integral equation method utilizing analytically derived characteristic basis functions for the scattering from large faceted objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 9, 2508-2514, 2006.

43. Lucente, E., A. Monorchio, and R. Mittra, Generation of characteristic basis functions by using sparse MoM impedance matrix to construct the solution of large scattering and radiation problems, IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, 4091-4094, Albuquerque, New Mexico, 2006.
doi:10.1093/ietele/e90-c.2.231

44. Tiberi, G., A. Monorchio, M. Degiorgi, G. Manara, and R. Mittra, "An efficient method to calculate the convolution based reaction integral using the analytical fourier transform," IEICE Transactions on Electronics, Vol. E90-C, No. 2, 231-234, 2007.
doi:10.1093/ietele/e90-c.2.252

45. Tiberi, G., A. Monorchio, G. Manara, and R. Mittra, "A numerical solution for electomagnetic scattering from large faceted conducting bodies by using physical optics-SVD derived bases," IEICE Transactions on Electronics, Vol. E90-C, No. 2, 252-257, 2007.

46. Lucente, E., A. Monorchio, and R. Mittra, Fast and efficient RCS computation over a wide frequency band using the Universal Characteristic Basis Functions (UCBFs), IEEE International Symposium on Antennas and Propagation, Honolulu, Hawaii, 2007.

47. Delgado, C., F. Catedra, and R. Mittra, A numerically efficient technique for orthogonalizing the basis functions arising in the solution of electromagnetic scattering problems using the CBFM, IEEE International Symposium on Antennas and Propagation, Honolulu, Hawaii, 2007.

48. Garcia, E., C. Delgado, F. S. De Adana, F. Catedra, and R. Mittra, Incorporating the multilevel fast multipole method into the Characteristic Basis Function Method to solve large scattering and radiation problems, IEEE International Symposium on Antennas and Propagation, Honolulu, Hawaii, 2007.
doi:10.1109/ICEAA.2007.4387363

49. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Application of trapezoidal-shaped characteristic basis functions to arrays of electrically interconnected antenna elements," Electromagnetics in Advanced Applications, ICEAA, 567-571, 2007.

50. Yagbasan, A., C. A. Tunc, V. B. Erturk, A. Altintas, and R. Mittra, "Use of Characteristic Basis Function Method for scattering from terrain profiles," ELEKTRIK, to appear.

51. Mittra, R., H. Abdel-Raouf, and N. T. Huang, CBFDTD --- A new extension of the FDTD algorithm for solving large radiation, scattering and EMI/EMC problems, International Conference on Electromagnetics in Advanced Applications and European Electromagnetic Structures Conference, ICEAA’05, Torino, Italy, 2005.
doi:10.1109/TAP.2008.919166

52. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approachbased on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved