PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 14 > pp. 175-202

FREQUENCY DISPERSION OF DIELECTRIC PERMITTIVITY AND ELECTRIC CONDUCTIVITY OF ROCKS VIA TWO-SCALE HOMOGENIZATION OF THE MAXWELL EQUATIONS

By V. V. Shelukhin and S. A. Terentev

Full Article PDF (337 KB)

Abstract:
We evaluate effective dielectric permittivity and electric conductivity for water-saturated rocks based on a realistic model of a representative cell of the pore space which has periodical structure. We have applied the method of two-scale homogenization of the Maxwell equations, which results in up-scaling coupled equations at the microscale to equations valid at the macroscale. We have analyzed the interfacial Maxwell-Wagner dispersion effect and the Archie law as well.

Citation:
V. V. Shelukhin and S. A. Terentev, "Frequency Dispersion of Dielectric Permittivity and Electric Conductivity of Rocks via Two-Scale Homogenization of the Maxwell Equations," Progress In Electromagnetics Research B, Vol. 14, 175-202, 2009.
doi:10.2528/PIERB09021804

References:
1. Sihvola, A., Electromagnetic Mixing Formulae and Applications, The Institution of Electric Engineers, London, 1999.

2. Herrick, D. C. and W. D. Kennedy, "Electrical efficiency: A pore geometric theory for interpretation of the electrical properties of reservoir rocks," Geophysics, Vol. 59, No. 6, 918-927, 1994.
doi:10.1137/0523084

3. Allaire, G., "“Homogenization and two-scale convergence," SIAM J. Math. Anal., Vol. 23, No. 6, 1482-1518, 1992.
doi:10.1137/0523084

4. Bakhvalov, N. and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht, 1989.

5. Beliaev, A. Y., Homogenization in the Problems of Groundwater Flows, Nauka, Moscow, 2004.

6. Bensoussan, A., J.-L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-holland, Amsterdam, 1978.

7. Coiranescu, D. and P. Donato, An Introduction to Homogenization, Number 17 in Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 1999.

8. Dal Maso, G., An Introduction to Gamma-Convergence, Boston, 1993.

9. De Giorgi, E., "Sulla convergenza di alcune successioni d'integrali del tipo dell'area," Rend. Mat., Vol. 8, No. 6, 277-294, 1975.

10. Murat, F., "Compacite par compensation, Partie I," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 5, 489-507, 1978.

11. Murat, F., "Compacite par compensation, Partie II," Proc. Intern. Meeting on Recent Methods in Nonlinear Analysis, De Giorgi (ed.), Magenes, Mosco, Pitagora, Bologna, 245-256, 1979.
doi:10.1137/0520043

12. Nguetseng , G., "A general convergence result for a functional related to the theory of homogenization," SIAM J. Math. Anal., Vol. 20, No. 3, 608-623, 1989.
doi:10.1137/0520043

13. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Lecture notes in Phys. Springer, New York, 1980.

14. Spagnolo, S., "Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore," Ann. Scuola Norm. Sup. Pisa, Cl. Sci. Fis. Mat., Vol. 21, No. 3, 657-699, 1967.

15. Tartar, L., "Problemes d'homogeneisation dans les equations aux derivees partielles," H-convergence, F. Murat (ed.), Cours Peccot College de France, Seminare d'Analyse Fonctionnelle et Numerique, 1977/78, Universite d'Alger,1978.

16. Zhikov, V. V., Kozlov, S. M., and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin etc, 1994.

17. Bakhvalov, N. S., "Homogenized characteristics of bodies with periodic structures," Doklady Mathematics of USSR, Vol. 218, No. 5, 1046-1048, 1974.

18. Caillerie, D. and T. Levy, "Application de l'homogeneisation au compartement electromagnetic d'un melange isolant-conducteur," C. R. Acad. Sc. , Vol. 296, Ser. II, 1035-1038, 1983.

19. Engstrom, C. and D. Sjoberg, "On two numerical methods for homogenization of Maxwell's equations," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 13, 1845-1856, 2007.

20. Kristensson, G., Homogenization of the Maxwell equations in an anisotropic material, Technical Report LUTEDX/(TEAT-7124)/1-12/(2001), Department of Electroscience, Lund Institute of Technology, Sweeden,2001.

21. Markowich, P. A. and F. Poupaud, "The Maxwell equation in a periodic medium: Homogenization of the energy density," Ann. Sc. Norm. Sup. Pisa Cl. Sci., Vol. 23, No. 4, 301-324, 1996.

22. Sjoberg, D., Homogenizatopn of dispersive material parameters for Maxwell's equations using a singular value decomposition, Technical Report LUTEDX/(TEAT-7124)/1-24/(2004), Department of Electroscience, Lund Institute of Technology, Sweeden, 2004.

23. Sjoberg, D., C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, A floquet-bloch decomposition of Maxwell's equations, applied to homogenization, Technical ReportLUTEDX/(TEAT-7119)/1-27/(2003), Department of Electroscience,Lund Institute of Technology, Sweeden, 2003.

24. Wellander, N., "Homogenization of the Maxwell equations: Case I. Linear theory," Appl. Math., Vol. 46, No. 2, 29-51, 2001.
doi:10.1023/A:1013727504393

25. Wellander, N., "Homogenization of the Maxwell equations: Case II. Nonlinear conductivity," Appl. Math., Vol. 47, No. 3, 255-283, 2002.
doi:10.1023/A:1021797505024

26. Banks, H. T., V .A. Bokil, D. Ciroanescu, N. L. Gibson, G. Griso, and B. Miara, "Homogenization of periodically varying coefficients in electromagnetic materials," J. Sci. Comput., Vol. 28, No. 2-3, 191-221, 2006.
doi:10.1007/s10915-006-9091-y

27. Bosavit, A., G. Griso, and B. Miara, "Modelisation de structures electromanetiques periodiques: Materiaux bianisotropiques avec memoire," C.R. Acad. Sci. Paris, Ser. I, Vol. 338, 97-102, 2004.

28. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403

29. Artola, M., "Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions," Proceedings of the Second Workshop on Composite Media and Homogenization Theory, D. Maso and G. Dell'Anttotnio (eds.), Singapore, World Scientifis Publisher, 2005.

30. Kristensson, G., "Homogenization of corrugated interfaces in electromagnetics," Progress In Electromagnetics Reserach, Vol. 55, 1-31, 2005.
doi:10.2528/PIER05020302

31. Ouchetto, O., S. Zouhdi, A. Bossavit, G. Griso, and B. Miara, "Modeling of 3D periodic multiphase composites by homogenization," Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, Part 2, 2615-2619, 2006.

32. Wellander, N. and G. Kristensson, "Homogenization of the Maxwell equations at fixed frequency," SIAM J. Appl. Math., Vol. 64, No. 1, 170-195, 2003.
doi:10.1137/S0036139902403366

33. Garrouch, A. A. and M. M. Sharma, "The influence of clay contents, salinity, stress, and wettability on the dielectric properties of brine-saturated rocks: 10Hz to 10MHz," Geophysics, Vol. 59, No. 6, 909-917, 1994.
doi:10.1190/1.1443650

34. El Feddi, M., Z. Ren, A. Razek, and A. Bossavit, "Homogenization technique for Maxwell equations in periodic structures," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1382-1385, 1997.
doi:10.1109/20.582514

35. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of effective magnetic permeability of multiphase materials," J. Appl. Phys., Vol. 33, 3125-3131, 1962.
doi:10.1063/1.1728579

36. Sihvola, A., "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geosciences and Remote Sensing, Vol. 38, No. 3, 1303-1308, 2000.
doi:10.1109/36.843023

37. Vinogradov, A. P., Electrodynamics of Composite Materials, Editorial, URSS, Moscow, 2001.

38. Roberts, J. N. and L. M. Schwartz, "Grain consolidation and electrical conductivity in porous media," Physical Review B, Vol. 31, No. 9, 5990-5997, 1985.
doi:10.1103/PhysRevB.31.5990

39. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley& Son, New York, 1975.

40. Maxwell, J. C., Treatise on Electricity and Magnetism, Vol. 21, Clarendon Press, Oxford, 1881.

41. Wagner, K. W., Aroh Elektrotech, No. 9, 371-392, 1914.

42. Brawn, Jr., W. F., Dielectrics, Handbuch der Physik, Herausgegeben von S. Figgre, Band XVII, S. 1, Springer-Verlag, Berlin-Gettingen-Heidelberg, 1956.

43. Dykhne, A. M., "Conductivity of a two-dimensional twophase system," Journal of Experimental and Theoretical Physics, Vol. 59, No. 7, 110-115, 1970.

44. Talalov, A. D., D. S. Daev, and , "On a structure mechanism undelying dispersion of electrical properties of heterogeneous rocks," Izvesiya, Physics of the Solid Earth, Vol. 8, 56-66, 1996.

45. Zuzovsky, M. and H. Brenner, "Effective conductivities of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix," J. Appl Math. Phys., Vol. 28, 979-992, 1977.


© Copyright 2010 EMW Publishing. All Rights Reserved