Vol. 14
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-04-28
More Efficiency of Transverse Wave Approach (Twa) by Applying Anisotropic Mesh Technique (Amt) for Full-Wave Analysis of Microwave Planar Structures
By
Progress In Electromagnetics Research B, Vol. 14, 383-405, 2009
Abstract
The present paper sets out to present a numerical electromagnetic (EM) method TWA for EM field modeling of planar structures. Combining both the benefits of TWA process and the modeling of planar excitation source, an optimization technique AMT is applied and evaluated in context of RF integratedcircuit applications. The computational complexity of TWA process is examined and the obtained simulation results are found to be in good agreement with literature.
Citation
Mohamed Ayari, Taoufik Aguili, and Henri Baudrand, "More Efficiency of Transverse Wave Approach (Twa) by Applying Anisotropic Mesh Technique (Amt) for Full-Wave Analysis of Microwave Planar Structures," Progress In Electromagnetics Research B, Vol. 14, 383-405, 2009.
doi:10.2528/PIERB09022001
References

1. Liu, X., B.-Z.Wang, and S. Lai, "Element-free Galerkin method in electromagnetic scattering field computation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1915-1923, 2007.
doi:10.1163/156939307783152920

2. Warnick, K. F., "An intuitive error analysis for FDTD and comparison to MoM," IEEE Antenna and Propagation Magazine, Vol. 47, 111-115, Dec. 2005.
doi:10.1109/MAP.2005.1608751

3. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements — A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

4. Booton, R. C., Computational Methods for Electromagnetics and Microwaves, John Wiley & Sons, New York, 1992.

5. Yamashita, E., Analysis method for EM Wave Problems, Artech House, Boston, London, 1990.

6. Warnick, K. F. and W. C. Chew, "Error analysis of MoM," IEEE Antenna and Propagation Magazine, Vol. 46, 38-53, Dec. 2004.

7. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

8. Wang, J. J., Generalized MoM in Electromagnetics, John Wiley& Sons, New York, 1991.

9. Papakanellos, P. J., "Accuracy and complexity assessment of subdomain moment methods for arrays of thin-wire loops," Progress In Electromagnetics Research, Vol. 78, 1-15, 2008.
doi:10.2528/PIER07071704

10. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain composition method," Journal of Electromagnetic Waves and Applications, Vol. 22, 251-266, 2008.
doi:10.1163/156939308784160668

11. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 07, 57-110, 1993.

12. Itoh, T., Numerical techniques for Microwave and Millimeter-Wave Passive Structures, John Wiley & Sons, New York, 1989.

13. Davidson, D. B., Computational Electromagnetics, Cambridge University Press, Cambridge, 2005.

14. Ayari, M., T. Aguili, H. Temimi, and H. Baudrand, "An extended version of Transverse Wave Approach (TWA) for fullwave investigation of planar structures," Journal of Microwave, Optoelectronics and Electromagnetic Applications, Vol. 7, No. 2, Dec. 2008.

15. Wane, S., D. Bajon, and H. Baudrand, "Full-wave analysis of inhomogeneous deep-trench isolation patterning for substrate coupling reduction and Q-factor improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, Dec. 2006.
doi:10.1109/TMTT.2006.885579

16. Wane, S., D. Bajon, and H. Baudrand, "“A new full-wave hybrid differential-integral approach for the investigation of multilayer structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, Jan. 2005.
doi:10.1109/TMTT.2004.839905

17. Taillardat, Ph., H. Aubert, and H. Baudrand, "A combination of quasi-static approach with an integral method for the characterisation of microwave planar circuits," IEEE Symp. MTTS, Vol. 1, 17-420, San Diego, May 1994.

18. Horng, T. S., W. E. McKinzie, and N. G. Alexopoulos, "Fullwave spectral domain analysis of compensation of microstrip discontinuities using triangular sub-domain functions," IEEE Trans. MTT, Vol. 40, No. 12, 2137-2148, Dec. 1992.
doi:10.1109/22.179874

19. Khan, R. L. and G. I. Costache, "Finite element method applied to modeling crosstalk problems on printed circuits boards ," IEEE Trans. Elect. Comp., Vol. 31, 5-15, Feb. 1989.
doi:10.1109/15.19902

20. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

21. Manzanares-Martınez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive of the relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134452

22. Schlager, K. L., "“Relative accuracy of several finite-difference time domain methods in two and three dimensions," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 12, 1732-1737, Dec. 1993.
doi:10.1109/8.273296

23. Gao, S., L.-W. Li, and A. Sambell, "FDTD analysis of a dualfrequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102

24. Faghihi, F. and H. Heydari, "A combination of time domain finite element-bofor calculation of electromagnetic scattering of 3-D structuresundary integral and with time domain physical optics ," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206

25. Hoefer, W. J. R., "The TLM-method: Theory and applications," IEEE Trans. Microwave Theory and Tech., Vol. 33, No. 10, 882-893, Oct. 1985.
doi:10.1109/TMTT.1985.1133146

26. Wienner, M., Electromagnetic analysis using Transmission Line, World Scientific, New Jersey, 2001.

27. Russer, P., "The transmission line matrix method," Applied Computational Methods, NATO ASI series, 243-269, Springer, London, 2000.

28. Christopoulos, C. and P. Russer, "Application of TLM to EM problems," Applied Computational Electromagnetic, NATO ASI Series, 324-350, Springer, New York, 2000.

29. Pregla, R. and L. Vietzorreck, "Combination of the source method with absorbing boundary conditions in the method of lines," IEEE Micro. Guided Wave Lett., Vol. 5, 227-229, Jul. 1995.

30. Dreher, A. and T. Rother, "New aspects of the method of lines," IEEE Micro. Guided Wave Lett., Vol. 5, 408-410, Nov. 1995.

31. Helfert, S. F., "Applying oblique coordinates in the method of lines," Progress In Electromagnetics Research, Vol. 61, 271-278, 2006.
doi:10.2528/PIER06041204

32. Preglas, R., "MOL-BPM method of lines based beam propagation method," Progress In Electromagnetics Research, Vol. 11, 51-102, 1995.

33. Ney, M. M., "Method of moments as applied to electromagnetics problems," IEEE Trans. Microwave Theory Tech., Vol. 33, 972-980, Oct. 1985.
doi:10.1109/TMTT.1985.1133158

34. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

35. Grayaa, K., N. Hamdi, T. Aguili, and A. Bouallegue, "Fullwave analysis of shielded planar circuits using different models of sources," IEE Proc.--- Micro. Antennas Prop., Vol. 150, 258-264, Aug. 2003.
doi:10.1049/ip-map:20030457

36. Alsunaidi, M. A., S. M. Simtiaz, and S. A. Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time domain model," IEEE Trans. MTT, Vol. 44, No. 6, 799-808, Jun. 1996.
doi:10.1109/22.506437

37. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulation of electromagnetic problems," International Journal of Numerical Modeling, Vol. 15, 23-57, Jan. 2002.
doi:10.1002/jnm.430

38. Pujol, S., H. Baudrand, V. F. Hanna, and X. Dong, "A new approach of the source method for characterization of planar structures," EuMC, 1015-1020, 1991.

39. Bajon, D. and H. Baudrand, "Application of wave concept iterative Procedure (WCIP) to Planar circuits," Microtec'2000, 864-868, Hanover, Sep. 2000.

40. Krokhin, A. A., I. B. Snapiro, and V. A. Yampol'skij, "Nonlinear voltampere characteristic of a thin metallic foil with non diffuse faces," Fizika Metallov i Metallovedenie (FMMTAK), Vol. 63, No. 3, 421-428, 1987.

41. Froelich, J., "Unital multiplications on a Hilbert space," Proc. of the Mathematical Society, Vol. 117, No. 3, Mar.1993.

42. Istratescu, I., "Unimodular numerical contractions in Hilbert space," Proc. Japan Acad., Vol. 47, 824-826, May 1971.
doi:10.3792/pja/1195526382

43. Stojmenovic, I., Handbook of Wireless Networks and Mobile Computing, John Wiley & Sons, Inc., New York, 2002.

44. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

45. Chen, C. H., C. L. Liu, C. C. Chiu, and T. M. Hu, "Ultrawide band channel calculation by SBR/Image techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
doi:10.1163/156939306775777387

46. Abdi, A., H. M. El-Sallabi, L. Vuokko, and S. G. Haggman, "Spatial smoothing effect on kronecker MIMO channel model in urban microcells," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 696, 2007.

47. Kuo, L.-C. and H.-R. Chuang, "A study of planar printed dipole antennas for wireless communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 652, 2007.
doi:10.1163/156939307780667355

48. Mahmoudian, A. and K. Forooragi, "A novel planar leaky wave antenna for wireless applications," Journal of Electromagnetic Waves and Applications, Vol. 22, 313-324, 2008.
doi:10.1163/156939308784160640

49. Qin, W., "A novel patch antenna with a T-shaped parasitic strip for 2.4/5.8GHz wlan applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2311-2320, 2007.
doi:10.1163/156939307783134344

50. Ayari, M., T. Aguili, and H. Baudrand, "An extended version of the differential-integral approach based on the transverse wave formulation," ITST'06, 457-460, Chengdu, China, Jun. 2006.

51. Ayari, M., T. Aguili, and H. Baudrand, "Nouvelle formulation de l'approche en ondes transverses & applications aux antennes en reseaux periodiques," OHD'05, 54-59, Hammamet, Tunisia, Sep. 2005.

52. Tsai, E. Y., A. M. Bacon, M. Tentzeris, and J. Papapolymerou, "Design and development of novel micro-machined patch antenna for wireless applications," Proc. Asian-Pacific Microwave Symposium, 821-824, Nov. 2002.

53. Ayari, M., T. Aguili, and H. Baudrand, "An electromagnetic simulation tool based on the original transverse wave approach (TWA)," WorldComp'07, Las Vega, Nevada, USA, MSV7410, Jun. 2007.