PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 15 > pp. 1-29

SUB-NANOSECOND ELECTROMAGNETIC-MICROMAGNETIC DYNAMIC SIMULATIONS USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD

By M. M. Aziz

Full Article PDF (502 KB)

Abstract:
This paper presents an efficient and simple approach of implementing the Landau-Lifshitz-Gilbert (LLG) equation of magnetisation motion within the Finite-Difference Time-Domain (FDTD) method. This combined electromagneticmicromagnetic simulation technique is particularly important for modeling electromagnetic interaction with lossy magnetic material in the presence of current and magnetic sources, particularly at very high frequencies. The efficient implementation involves simple two-point spatial interpolations that are applicable to two and three-dimensional FDTD grids, and uses a stable iterative algorithm for the time integration of the LLG equation. A ferromagnetic resonance numerical experiment on a rectangular Permalloy prism excited through its cross-section by a non-uniform pulse field from a transmission line was carried out for the purpose of verifying the combined FDTD-LLG computations. The numerical results were in good agreement with linearised analytical solutions of the LLG equation for uniform and non-uniform precession modes. This paper also presents a brief investigation on the use of non-staggered FDTD grid schemes to model magnetic material using the LLG equation, and indicates that the classical FDTD staggered scheme offers simplicity in implementation and more accuracy for modeling wave interaction with lossy magnetic material than the non-staggered schemes based on Maxwell's equations formulation.

Citation:
M. M. Aziz, "Sub-nanosecond electromagnetic-micromagnetic dynamic simulations using the finite-difference time-domain method," Progress In Electromagnetics Research B, Vol. 15, 1-29, 2009.
doi:10.2528/PIERB09042304
http://www.jpier.org/pierb/pier.php?paper=09042304

References:
1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2 Ed., Arctech House, Boston, Mass., 2000.

2. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, No. 15.3, 308-322, CRC Press, Florida, 1993.

3. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "An extended fdtd method for the treatment of partially magnetized ferrites," IEEE Trans. Magn., Vol. 31, 1666-1669, 1995.
doi:10.1109/20.376355

4. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "A treatment of magnetized ferrites using the FDTD method," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 5, 136-138, 1993.
doi:10.1109/75.217207

5. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Prieto, "FDTD analysis of magnetized ferrites: Application to the calculation of dispersion characteristics of ferrite-loaded waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 2, 350-357, 1995.
doi:10.1109/22.348095

6. Zheng, G. and K. Chen, "Transient analysis of microstrip lines with ferrite substrate by extended FD-TD method," Int. J. of Infrared and Millimeter Waves, Vol. 13, No. 8, 1115-1125, 1992.
doi:10.1007/BF01009054

7. Reineix, A., T. Monediere, and F. Jecko, "Ferrite analysis using the finite-difference time-domain (FDTD) method," Microwave and Optical Technology Letters, Vol. 5, No. 13, 685-686, 1992.
doi:10.1002/mop.4650051311

8. Okoniewski, M. and E. Okoniewska, "FDTD analysis of magnetized ferrites: A more efficient algorithm," IEEE Microwave and Guided Wave Letters, Vol. 4, No. 6, 169-171, 1994.
doi:10.1109/75.294281

9. Vacus, O. and N. Vukadinovic, "Dynamic susceptibility computations for thin magnetic films," Journal of Computational and Applied Mathematics, Vol. 176, 263-281, 2005.
doi:10.1016/j.cam.2004.07.016

10. Soohoo, R. F., Magnetic Thin Films, No. 10.2, 188, Harper and Row, New York, 1965.

11. Soohoo, R. F., Magnetic Thin Films, No. 11.1, 206, Harper and Row, New York, 1965.

12. Brown, W. F., Micromagnetics, Robert E. Krieger Publishing Co., New York, 1978.

13., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagations, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

15. Slodicka, M. and I. Cimrak, "Numerical study of nonlinear ferromagnetic materials," Applied Numerical Mathematics, Vol. 46, 95-111, 2003.

16. Hicken, R. J. and J. Wu, "Observation of ferromagnetic resonance in the time domain," J. Appl. Phys., Vol. 85, No. 8, 4580-4582, 1999.
doi:10.1063/1.370414

17. Wu, J., N. D. Hughes, J. R. Moore, and R. J. Hicken, "Excitation and damping of spin excitations in ferromagnetic thin films," Journal of Magnetism and Magnetic Materials, Vol. 241, 96-109, 2002.
doi:10.1016/S0304-8853(01)00930-1

18. Soohoo, R. F., Magnetic Thin Films, No. 4.2, 40, Harper and Row, New York, 1965.

19. Wagner, C. L. and J. B. Schneider, "Divergent fields, charge, and capacitance in FDTD simulations," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 12, 2131-2136, 1998.
doi:10.1109/22.739294

20. Osborn, J. A., "Demagnetizing factors of the general ellipsoid," Physical Review, Vol. 67, No. 11-12, 351-357, 1945.
doi:10.1103/PhysRev.67.351

21. Soohoo, R. F., Microwave Magnetics, No. 7.1, 166, Harper & Row, New York, 1985.

22. Smythe, W. R., Static and Dynamic Electricity, 2 Ed., No. 7.09, 270, McGraw-Hill, New York, 1950.

23. Soohoo, R. F., Magnetic Thin Films, No. 11.1(a), 205, Harper and Row, New York, 1965.

24. Soohoo, R. F., Microwave Magnetics, No. 7.3, 174, Harper & Row, New York, 1985.

25. Soohoo, R. F., Microwave Magnetics, No. 7.4, 178, Harper & Row, New York, 1985.

26. Park, J. P., P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, "Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires," Phys. Rev. Lett., Vol. 89, No. 27, 277201, 2002.
doi:10.1103/PhysRevLett.89.277201

27. Gubbiotti, G., M. Conti, G. Carlotti, P. Candeloro, E. D. Fabrizio, K. Y. Guslienko, A. Andre, C. Bayer, and A. N. Slavin, "Magnetic field dependence of quantized and localized spin-wave modes in thin rectangular magnetic dots," J. Phys.: Condens. Matter, Vol. 16, 7709-7721, 2004.
doi:10.1088/0953-8984/16/43/011

28. Aharoni, A., Introduction to the Theory of Ferromagnetism, 2 Ed., No. 11, 238, Oxford Science Publications, Oxford, 2000.

29. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference timedomain method without the courant stability conditions," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026

30. Liu, Y., "Fourier analysis of numerical algorithms for the maxwell equations," J. of Computational Physics, Vol. 124, 396-416, 1996.
doi:10.1006/jcph.1996.0068

31. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, No. 19.3, 360, CRC Press, 1993.

32. De Flavis, F., M. G. Noro, R. E. Diaz, G. Franceschetti, and N. G. Alexopoulos, "A time-domain vector potential formulation for the solution of electromagnetic problems," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 9, 310-312, 1998.
doi:10.1109/75.720465

33. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 15, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

34. Leung, W. and Y. Chen, "Transformed-space nonuniform pseudospectral time-domain algorithm," Microwave and Optical Technology Letters, Vol. 28, No. 6, 391-396, 2001.
doi:10.1002/1098-2760(20010320)28:6<391::AID-MOP1051>3.0.CO;2-5


© Copyright 2010 EMW Publishing. All Rights Reserved