PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 15 > pp. 197-215

MODELING OF SHIELDING COMPOSITE MATERIALS AND STRUCTURES FOR MICROWAVE FREQUENCIES

By M. Y. Koledintseva, J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault

Full Article PDF (424 KB)

Abstract:
Composites containing conducting inclusions are required in many engineering applications, especially, for the design of microwave shielding enclosures to ensure electromagnetic compatibility and electromagnetic immunity. Herein, multilayer shielding structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber-filled composites are considered. For modeling absorbing composites with low concentration of conducting cylindrical inclusions (below the percolation threshold), the Maxwell Garnett theory is used. For reflecting layers, when concentration of inclusions is close to or above the percolation threshold, the McLachlan formulation is used. Frequency dependencies for an effective permittivity are approximated by the Debye curves using a curve-fitting procedure, in particular, a genetic algorithm.

Citation:
M. Y. Koledintseva, J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of Shielding Composite Materials and Structures for Microwave Frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

References:
1. Norman, R. H., Electrically Conducting Rubber Composites, Elsevier, Oxford, 1970.

2. Wang, Y. and X. Jing, "Intrinsically conducting polymers for electromagnetic interference shielding," Polymers for Advanced Technologies, Vol. 16, 344-351, 2005.
doi:10.1002/pat.589

3. Faezc, R., R. H. Schuster, and M. A. De Paoli, "A conductive elastomer based on EPDM and polyaniline 2. Effect of the crosslinking method," European Polymer Journal, Vol. 38, 2459-2463, 2002.
doi:10.1016/S0014-3057(02)00133-7

4. Fox, R. T., V. Wani, K. E. Howard, A. Bogle, and L. Kempel, "Conductive polymer composite materials and their utility in electromagnetic shielding applications," Journal of Applied Polymer Science, Vol. 107, No. 4, 2558-2566, 2008.
doi:10.1002/app.27317

5. Mather, P. J. and K. M. Thomas, "Carbon black/high density polyethylene conducting composite materials," Journal of Material Science, Vol. 32, 401-407, 1997.
doi:10.1023/A:1018557501174

6. Radford, D. W., "Metallized microballoon filled composite EMI shielding materials," Journal of Testing and Evaluation (JTE), Vol. 21, No. 5, 396-401, 1993.
doi:10.1520/JTE11783J

7. Rea, S. P., D. Wylie, D. Linton, E. Orr, and J. McConnell, "EMI shielding of woven carbon fibre composites," IEEE High Frequency Postgraduate Student Colloquium, 205-210, UMIST, Manchester, UK, Sep. 6-7, 2004.

8. Ding, J., S. P. Rea, E. Orr, and J. McConnell, "Mixture properties of carbon fibre composite materials for electronics shielding in systems packaging," Electronics System-Integration Technology Conference, 2006. 1st, 19-25, Sep. 5-7, 2006.

9. Li, M., J. Neubel, J. L. Drewniak, R. E. DuBroff, T. H. Hubing, and T. P. Van Doren, "EMI from airflow aperture arrays in shielding enclosures --- Experiments, FDTD and MOM modeling," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 265-275, Aug. 2000.
doi:10.1109/15.865333

10. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies,", Vol. 1, 169-174, Chicago, IL, Aug. 2005.

11. Koledintseva, M. Y., P. C. Ravva, J. L. Drewniak, A. A. Kitaitsev, and A. A. Shinkov, "Engineering of ferrite-graphite media for microwave shields," Proc. Int. IEEE Symp. Electromag. Compat., 598-602, Portland, OR, Aug. 2006.

12. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103

13. De Rosa, I. M., F. Sarasini, M. S. Sarto, and A. Tamburrano, "EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, Part 1, 556-563, 2008.
doi:10.1109/TEMC.2008.926818

14. Yang, Y., M. C. Gupta, K. L. Dudley, and R. W. Lawrence, "A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites," Journal of Nanoscience and Nanotechnology, Vol. 5, 927-931, 2005.
doi:10.1166/jnn.2005.115

15. Li, Y., C. Chen, S. Zhang, Y. Ni, and J. Huang, "Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films," Applied Surface Science, Vol. 254, No. 18, 5766-5771, Jul. 2008.
doi:10.1016/j.apsusc.2008.03.077

16. Liu, L., S. Matitsine, Y. B. Gan, L. F. Chen, L. B. Kong, and K. N. Rozanov, "Frequency dependence of effective permittivity of carbon nanotube composites," J. Appl. Phys., Vol. 101, 094106, 2007.
doi:10.1063/1.2728765

17. Matitsine, S. M., K. M. Hock, L. Liu, Y. B. Gan, A. N. Lagarkov, and K. N. Rozanov, "Shift of resonance frequency of long conducting fibers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, Jul. 15, 2003.
doi:10.1063/1.1577395

18. Sihvola, A. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosc. Remote Sens., Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045

19. Neelakanta, P. S., Handbook of Electromagnetic Materials, Boca Raton, CRC Press, FL, 1995.

20. Kuester, E. F. and C. L. Holloway, "Comparison of approximations for effective parameters of artificial dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 3, 1752-1755, 1990.
doi:10.1109/22.60028

21. Sheng, P., "Theory of dielectric function of granular composite media," Phys. Rev. Letters, Vol. 45, No. 1, 60-63, 1980.
doi:10.1103/PhysRevLett.45.60

22. Doyle, W. T. and I. S. Jacobs, "The influence of particle shape on dielectric enhancement in metal-insulator composites," J. Appl. Phys., Vol. 71, No. 8, 3926-3936, 1992.
doi:10.1063/1.350862

23. Diaz, R. E., W. M. Merrill, and N. G. Alexopoulos, "Analytical framework for the modeling of effective media," J. Appl. Phys., Vol. 84, No. 12, 8615-6826, 1998.
doi:10.1063/1.369013

24. Maxwell, Garnett and J. C, "Colors in metal glasses and metal films," Philos. Trans. Royal Soc. London, Sect. A, Vol. 3, 385-420, 1904.

25. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, Santa Clara, CA, Aug. 9-13, 2004.

26. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modeling the permittivity of composite materials with general effective medium equation," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.

27. Koledintseva, M. Y., G. Antonini, J. Zhang, A. Orlandi, K. N. Rozanov, and J. L. Drewniak, "Reconstruction of the parameters of Debye and Lorentzian dispersive media using a Genetic Algorithm," Proc. IEEE Int. Symp. Electromag. Compat., Vol. 2, 898-903, Boston, MA, Aug. 18-22, 2003.

28. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chap. 5, online Rutgers University, Multilayer Structures, Nov. 2004.

29. Koledintseva, M. Y., V. V. Bodrov, I. V. Sourkova, M. M. Sabirov, and V. I. Sourkov, "Unified spectral technique application for study of radiator behavior near planar layered composites," Progress In Electromagnetics Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701

30. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

31. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903

32. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," J. Phys, D: Appl. Phys., Vol. 35, 3127-3137, 2002.
doi:10.1088/0022-3727/35/23/314

33. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, Mar. 1996.
doi:10.1103/PhysRevB.53.6318

34. Obukhov, S. P., "Percolation in system of randomly distributed sticks," J. Physics, A: Math. Gen., Vol. 21, 3975-3978, 1988.
doi:10.1088/0305-4470/21/20/017

35. Lagarkov, A. N., S. M. Matytsin, K. N. Rozanov, and A. K. Sarychev, "Dielectric properties of fiber filled composites," J. Appl. Phys., Vol. 84, No. 7, 3806-3814, Oct. 1998.
doi:10.1063/1.368559

36. Teflon Dielectric Properties, http://www.dupont.com/Teflon Industrial/en US/products/product by name/teflon., Nov. 2005.

37. Koledintseva, M., J. Drewniak, Y. J. Zhang, J. Lenn, and M. Thoms, "Modeling of ferrite-based materials for shielding enclosures," J. Magn. Magn. Mater. (JMMM), Vol. 321, 730-733, 2009.
doi:10.1016/j.jmmm.2008.11.037

38. Sihvola, A. Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series 47, The IEE, UK, 1999.


© Copyright 2010 EMW Publishing. All Rights Reserved