PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 15 > pp. 375-400

NEW VERSION OF TWA USING TWO-DIMENSIONAL NON-UNIFORM FAST FOURIER MODE TRANSFORM (2D-NUFFMT) FOR FULL-WAVE INVESTIGATION OF MICROWAVE INTEGRATED CIRCUITS

By M. Ayari, T. Aguili, and H. Baudrand

Full Article PDF (673 KB)

Abstract:
In this paper, a novel version of the transverse wave approach (TWA) based on two-dimensional non-uniform fast Fourier mode transform (2D-NUFFMT) is presented and developed for full-wave analysis of RF integrated circuits (RFICs). An adaptive mesh refinement is applied in this advanced TWA process and CPU computation time is evaluated throughout 30 GHz patch antenna, application belonging to wireless systems. The TWA in its novel version is favorably compared with the conventional one in presence of AMT technique in the context of EM simulations. Another version of TWA is outlined to illustrate a computationally efficient way to handle an arbitrary mesh for RFICs analysis with high complexity problems.

Citation:
M. Ayari, T. Aguili, and H. Baudrand, "New Version of Twa Using Two-Dimensional Non-Uniform Fast Fourier Mode Transform (2D-Nuffmt) for Full-Wave Investigation of Microwave Integrated Circuits," Progress In Electromagnetics Research B, Vol. 15, 375-400, 2009.
doi:10.2528/PIERB09052301

References:
1. Ayari, M., T. Aguili, and H. Baudrand, "More efficiency of Transverse Wave Approach (TWA) by applying Anisotropic Mesh Technique (AMT) for full-wave analysis of microwave planar structures," Progress In Electromagnetics Research B, Vol. 14, 383-405, 2009.
doi:10.2528/PIERB09022001

2. Ayari, M., T. Aguili, H. Temimi, and H. Baudrand, "An extended version of Transverse Wave Approach (TWA) for full-wave investigation of planar structures," Journal of Microwave, Optoelectronics and Electromagnetic Applications, Vol. 7, No. 2, Dec. 2008.

3. Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, NJ, 1974.

4. Dongarra, J. and F. Sullivan, "Introduction to the top 10 algorithms," Computing in Science and Engineering, Vol. 2, No. 1, 2000.
doi:10.1109/MCISE.2000.814652

5. Cooley, J. W. and J. W. Tukey, "An algorithm for machine calculation of complex fourier series," Math. Computation, Vol. 19, No. 90, 297, 1965.
doi:10.2307/2003354

6. Sundararajan, D., The Discrete Fourier Transform: Theory, Algorithms and Applications, Prentice-Hall, NJ, 2001.

7. Anderson, C. and M. D. Dahleh, "Rapid computation of the discrete Fourier transform," SIAM J. Sci. Comput., Vol. 17, 913-919, 1996.
doi:10.1137/0917059

8. Oppenheim, A. and D. Johnson, "Computation of spectra with unequal resolution using the fast Fourier transform," Proc. IEEE, Vol. 59, 299-301, Feb. 1971.
doi:10.1109/PROC.1971.8146

9. Bagchi, S. and S. Mitra, The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing, Kluwer, Boston, MA, 1999.

10. Bagchi, S. and S. K. Mitra, "The nonuniform discrete Fourier transform and its applications in filter design. 1 --- 1-D," IEEE Trans. Circuits Syst. 2, Vol. 43, 422-433, Jun. 1996.
doi:10.1109/82.502315

11. Angelides, E. and J. E. Diamessis, "A novel method for designing FIR digital filters with non-uniform frequency samples," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 42, 259-267, Feb. 1994.

12. Angelides, E., "A recursive frequency-sampling method for designing zero-phase FIR filters by nonuniform samples," IEEE Trans. Signal Processing, Vol. 6, 1461-1467, Jun. 1995.
doi:10.1109/78.388858

13. Sutton, B. P., D. C. Noll, and J. A. Fessler, "Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities," IEEE Trans. Med. Imag., Vol. 22, No. 2, 178-188, Feb. 2003.
doi:10.1109/TMI.2002.808360

14. Sutton, B. P., J. A. Fessler, and D. Noll, "A min-max approach to the non-uniform N-D FFT for rapid iterative reconstruction of MR images," Proc. Int. Soc. Mag. Res. Med., 763, 2001.

15. Brouw, W. N., "Aperture synthesis," Methods in Computational Physics, Vol. 14, 131-175, B. Alder, S. Fernbach, and M. Rotenberg (eds.), 1975.

16. O'Sullivan, J. D., "A fast sinc function gridding algorithm for Fourier inversion in computer tomography," IEEE Trans. Med. Imag., Vol. 4, No. 4, 200-207, 1985.
doi:10.1109/TMI.1985.4307723

17. Fourmont, K., "Non-equispaced fast Fourier transforms with applications to tomography," J. Fourier Anal. Appl., Vol. 9, No. 5, 431-450, 2003.
doi:10.1007/s00041-003-0021-1

18. Lawton, W., "A new polar Fourier-transform for computer-aided tomography and spotlight synthetic aperture radar," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 36, No. 6, 931-933, Jun. 1988.
doi:10.1109/29.1609

19. Kaveh, M. and M. Soumekh, "Computer-assisted diffraction tomography," Image Recovery: Theory and Application, 369-413, H. Stark (ed.), 1987.

20. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM J. Sci. Comput., Vol. 14, 1368-1393, Nov. 1993.
doi:10.1137/0914081

21. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data 2," Appl. Comput. Harmon. Anal., Vol. 2, 85-100, 1995.
doi:10.1006/acha.1995.1007

22. Beylkin, G., "On the fast fourier-transform of functions with singularities," Appl. Comput. Harmon. Anal., Vol. 2, No. 4, 363-381, Oct. 1995.
doi:10.1006/acha.1995.1026

23. Steidl, G., "A note on fast Fourier transforms for nonequispaced grids," Advances in Computational Mathematics, Vol. 9, 337-352, 1998.
doi:10.1023/A:1018901926283

24. Potts, D., G. Steidl, and M. Tasche, "Fast Fourier transforms for nonequispaced data: A tutorial," Modern Sampling Theory: Mathematics and Applications, 249-274, J. J. Benedetto and P. Ferreira (eds.), Birkhauser, Boston, MA, 2001.

25. Bagchi, S. and S. K. Mitra, "The nonuniform discrete Fourier transform and its applications in filter design. 2 --- 2-D," IEEE Trans. Circuits Syst. 2, Vol. 43, 434-444, Jun. 1996.
doi:10.1109/82.502316

26. Su, K. Y. and J. T. Kuo, "A two-dimensional nonuniform fast Fourier transform (2-D NUFFT) method and its applications to the characterization of microwave circuits," Asia-Pacific Microwave Conf., 801-804, Seoul, Korea, Nov. 4-7, 2003.

27. Su, K. Y. and J. T. Kuo, "Application of Two-Dimensional Non-uniform Fast Fourier Transform (2-D NUFFT) technique to analysis of shielded microstrip circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 3, Mar. 2005.

28. Liu, Q. H., X. M. Xu, B. Tian, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of differential and integral equations," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 1551-1560, Jun. 2000.
doi:10.1109/36.851955

29. Stoer, J. and R. Bullirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

30. Yazici, A., I. Altas, and T. Ergenc, "2D polynomial interpolation: A symbolic approach with mathematica," Lecture Notes in Computer Science (LNCS), Vol. 3482, 463-471, O. Gervasi et al. (eds.), ICCSA, Springer-Verlag Berlin Heidelberg, 2005.

31. Board, J. and K. Schulten, "The fast multipole algorithm," Computing in Science and Engineering 2, Vol. 1, 76-79, 2000.

32. Raykar, V. C., "A short primer on the fast multipole method: FMM tutorial,", University of Maryland, College Park, Apr. 8, 2006.

33. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, 7-12, Jan. 1993.
doi:10.1109/74.250128

34. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, 15-19, 1995.

35. Wei, X.-C., E. P. Li, and Y. J. Zhang, "Application of the improved finite element-fast multipole method on large scattering problems," Progress In Electromagnetics Research, Vol. 47, 49-60, 2004.
doi:10.2528/PIER03092501

36. Sørensen, T. S., T. Schaeffter, K. Ø. Noe, and M. S. Hansen, "Accelerating the non-equispaced fast fourier transform on commodity graphics hardware," IEEE Transactions on Medical and Imaging, Vol. 27, No. 4, Apr. 2008.

37. Turner, L. R., "Inverse of the vandermonde matrix with applications," NASA, Washington, D.C., Aug. 1966.

38. Electe, A. H. and I. Yad-Shalom, "Fast multi-resolution algorithms for matrix vector multiplication,", Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia, Oct. 1992.

39. Nguyen, D. K., I. Lavall'ee, and M. Bui, "A general scalable implementation of fast matrix multiplication algorithms on distributed memory computers," Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN'05), 2005.

40. Bond, D. M. and S. A. Vavasis, "Fast wavelet transforms for matrices arising from boundary elements methods: Tutorial,", Center for Applied Mathematics, Engineering and Theory Center, Cornell University, Ithaca, NY, Mar. 25, 1994.

41., "Fast multiplication of large matrices,", Wavelet Applications (Wavelet Toolbox), Matlab7.1.

42. Liu, Q. H. and X. Y. Tang, "Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT)," Electronics Letters, Vol. 34, No. 20, 1913-1914, 1998.
doi:10.1049/el:19981372


© Copyright 2010 EMW Publishing. All Rights Reserved