Vol. 17
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-28
Wideband and Low Sidelobe Linear Series Fed Yagi-Like Antenna Array
By
Progress In Electromagnetics Research B, Vol. 17, 153-167, 2009
Abstract
In this paper a linear series fed Yagi-like antenna array is introduced leading to an end-fire fan beam with low sidelobe level, SLL, high front to back ratio, F/B, and wide impedance bandwidth. The array can provide -29 dB SLL at centre frequency of 16.26 GHz, -20 dB SLL bandwidth of 7.5%, 23 dB F/B and 10.6% impedance bandwidth. Further improvement in SLL can be achieved by extending narrow strips from the finite ground plane of the antenna structure leading to some -32 dB SLL at centre frequency and a -20 dB SLL bandwidth of 8.7%. To verify the accuracy of the simulation results, both of the arrays are fabricated and tested. Finally, to show the applicability of the proposed design, the linear end-fire array of the above are stacked on top of each other and simulation results for a 2-D phased array are provided.
Citation
Reza Bayderkhani, and Hamid Reza Hassani, "Wideband and Low Sidelobe Linear Series Fed Yagi-Like Antenna Array," Progress In Electromagnetics Research B, Vol. 17, 153-167, 2009.
doi:10.2528/PIERB09072502
References

1. Pozar, D. M. and B. Kaufman, "Design considerations for low sidelobe microstrip arrays," IEEE Trans. Antennas and Propag., Vol. 38, No. 8, 1176-1185, Aug. 1990.
doi:10.1109/8.56953

2. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wide band phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

3. Skolnik, M. I., Radar Handbook, 3rd Ed., Vol. 1, 8, McGraw Hill Press, 2008.

4. Pozar, D. M. and D. H. Schaubert, "Comparison of three series fed microstrip array geometries," Proc. IEEE AP-S Int. Symp., Vol. 2, 728-731, 1993.
doi:10.1109/APS.1993.385244

5. Pozar, D. M., "A review of bandwidth enhancement techniques for microstrip antennas," Microstrip Antennas: Analysis and Design of Microstrip Antennas and Arrays, 157-166, IEEE Press, 1995.

6. Gronau, G., H. Moschuring, and I. Wolff, "Microstrip antenna arrays fed from the backside of the substrate," Proc. Int. Symp., Antennas Propagat., Kyoto, Japan, 1985.

7. Pozar, D. M., "A microstrip antenna aperture coupled to a microstrip line," Electronics Letters, Vol. 21, 49-50, Jun. 1985.

8. Pozar, D. M. and R. W. Jackson, "An aperture coupled microstrip antenna with a proximity feed on a perpendicular substrate," IEEE Trans. Antennas and Propag., Vol. 35, 728-731, Jun. 1987.
doi:10.1109/TAP.1987.1144167

9. Hirokawa, J. and M. Ando, "Sidelobe suppression in 76 GHz post-wall waveguide-fed parallel plate slot arrays," IEEE Trans. Antennas and Propag., Vol. 48, No. 11, 1727-1732, Nov. 2000.
doi:10.1109/8.900230

10. Kimura, Y., et al. "GHz alternating-phase fed single --- Layer slotted waveguide arrays with suppressed sidelobes in the E-plane," IEEE Trans. AP-S Dig., Vol. 41, 1042-1045, Jun. 2003.

11. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Wideband aperture coupled stacked patch antenna using thick substrates," Electronics Letters, Vol. 32, 1941-1942, Oct. 1996.

12. Oh, S., S. Seo, M. Yoon, C. Oh, E. Kim, and Y. Kim, "A broadband microstrip antenna array for LMDS applications," Microwave and Opt. Lett., Vol. 32, No. 1, 35-37, Jan. 2002.
doi:10.1002/mop.10084

13. Lewis, L. R., M. Fasset, and J. Hunt, "A broad-band stripline array element," IEEE Int. Symp. Antennas Propagat. Dig., 335-337, 1974.

14. Yngvesson, K. S., T. L. Korzeniowski, Y. Kim, E. L. Kollbuerg, and J. F. Johansson, "The tapered slot antennas --- A new integrated element for millimeter-wave applications," IEEE Trans. Microwave Theory Tech., Vol. 37, 365-374, Feb. 1989.
doi:10.1109/22.20062

15. Shin, J. and D. H. Schaubert, "A parameter study of stripline fed vivaldi notch-antenna arrays," IEEE Trans. Antennas and Propag., Vol. 47, No. 5, 879-886, May 1999.
doi:10.1109/8.774151

16. Holter, H., T.-H. Chio, and D. H. Schaubert, "Elimination of impedance anomalies in single and dual-polarized end-fire tapered slot phased arrays," IEEE Trans. Antennas and Propag., Vol. 48, No. 1, 122-124, Jan. 2000.
doi:10.1109/8.827394

17. Chio, T.-H. and D. H. Schaubert, "Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays," IEEE Trans. Antennas and Propag., Vol. 48, No. 6, 879-886, Jun. 2000.
doi:10.1109/8.865219

18. Holter, H., T.-H. Chio, and D. H. Schaubert, "Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays," IEEE Trans. Antennas and Propag., Vol. 48, No. 11, 1707-1718, Nov. 2000.
doi:10.1109/8.900228

19. Zhang, X. C., J. G. Liang, and J. W. Xie, "The quasi-Yagi antenna fed by an orthogonal T-junction," Progress In Electromagnetics Research Letters, Vol. 4, 109-112, 2008.
doi:10.2528/PIERL08050711

20. Deal, W., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 6, 910-918, Jun. 2000.
doi:10.1109/22.846717

21. Kaneda, N., Y. Qian, and T. Itoh, "A broad-band microstrip to-waveguide transition using quasi-Yagi antenna," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 12, 2562-2567, Dec. 1999.
doi:10.1109/22.809007

22. Kaneda, N., W. Deal, Y. Qian, R. Waterhouse, and T. Itoh, "A broad-band planar quasi-Yagi antenna," IEEE Trans. Antennas and Propag., Vol. 50, No. 8, 1158-1160, Aug. 2002.
doi:10.1109/TAP.2002.801299

23. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Characteristics of microstrip fed printed bow-tie antenna," Microwave Opt. Tech. Lett., Vol. 43, No. 2, 123-126, Oct. 2004.
doi:10.1002/mop.20396

24. Elsherbeni, A. Z., A. A. Eldek, and C. E. Smith, "Wideband slot and printed antennas," Encyclopedia of RF and Microwave Engineering, K. Chang, (ed.), John Wiley, Mar. 2005.

25. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Vol. 10, Wiley, New York, 2005.

26. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, 645-665, Peter Peregrinus Ltd., London, United Kingdom, 1989.

27. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, MA, 2001.

28. Yuan, T., N. Yuan, L.-W. Li, and M.-S. Leong, "Design and analysis of phased antenna array with low sidelobe by fast algorithm," Progress In Electromagnetics Research, Vol. 87, 131-147, 2008.
doi:10.2528/PIER08092401