Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 17 > pp. 343-359


By L. Crocco, M. D'Urso, and T. Isernia

Full Article PDF (185 KB)

In this paper, we describe a new full-wave integral equation model to tackle electromagnetic scattering problems arising from objects buried in layered media. Such a model is a rewriting of the usually adopted Contrast Source integral equation and is named Contrast Source-Extended Born (CS-EB) owing to this circumstance and to the relationship existing among its linearization and the Extended Born approximation. By means of this alternative formulation, it is possible to modify the relationship among the scatterer permittivity and the field it scatters, thus possibly reducing the degree of non-linearity of this latter relationship. Accordingly, in these cases, the adoption of the CS-EB model may be convenient with respect to traditional ones in both forward and inverse scattering problems.

L. Crocco, M. D'Urso, and T. Isernia, "The Contrast Source-Extended Born Model for 2D Subsurface Scattering Problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.

1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, Piscataway, NJ, 1995.

2. Wang, J. J., Generalized Moment Methods in Electromagnetics, Wiley, New York, 1991.

3. Zwamborn, P. and P. M. Van Den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 9, 1757-1766, 1992.

4. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and rytov approximations: A non-linear approach to electromagnetic scattering ," Jour. Geoph. Research, Vol. 98, 1775-1795, 1993.

5. Cui, T. J., W. C. Chew, and W. Hong, "New approximate formulations for EM scattering by dielectric objects," IEEE Trans. Antennas Propagat., Vol. 52, 684-692, 2004.

6. Christiansen, S., "A preconditioner for the electric field integral equation based on the Calderon formulas," SIAM J. Numer. Anal., Vol. 40, No. 3, 1100-135, 2002.

7. Ewe, W. B., L. W. Li, Q. Wu, and M. S. Leong, "Preconditioners for adaptive integral methods implementation," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2346-2350, 2005.

8. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer Verlag, Berlin, Germany, 1992.

9. Van Den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of the art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.

10. Tijhuis , A. G., K. Belkebir, A. C. S. Litman, and B. P. De Hon, "Theoretical and computational aspects of 2-D inverse profiling," IEEE Trans. Geosci. Rem. Sensing, Vol. 39, No. 6, 1316-1330, 2001.

11. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Rem. Sensing, Vol. 39, No. 2, 339-346, 2001.

12. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Subsurface inverse scattering problems: Quantifying, qualifying, and achieving the available information," IEEE Trans. Geosci. Rem. Sensing, Vol. 39, No. 11, 2527-2538, 2001.

13. Leon, G., R. Persico, and R. Solimene, "A quadratic model for electromagnetic subsurface prospecting," Int. J. Electron. Commun. (AE), Vol. 57, 33, 2003.

14. Catapano, I., L. Crocco, and T. Isernia, "A simple two-dimensional inversion technique for imaging homogeneous targets in stratified media," Radio Science, Vol. 39, No. 1, 148-161, 2004.

15. Bozza, G., C. Estatico, M. Pastorino, and A. Randazzo, "Application of an inexact-newton method within the second-order born approximation to buried objects," IEEE Geosci. Rem. Sens. Lett., Vol. 4, No. 1, 51-55, 2007.

16. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Rem. Sensing, Vol. 39, 1596-1607, 2001.

17. Isernia, T., L. Crocco, and M. D'Urso, "New tools and series for scattering problems in lossy media," IEEE Geosci. Rem. Sens. Lett., Vol. 1, No. 4, 327-331, 2004.

18. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "A novel e®ective model for solving 3D inverse scattering problems in lossy scenarios," IEEE Geosci. Rem. Sens. Lett., Vol. 3, No. 3, 302-306, 2006.

19. D'Urso, M., I. Catapano, L. Crocco, and T. Isernia, "Effective solution of 3D scattering problems via series expansions: Applicability and a new hybrid scheme," IEEE Trans. Geosci. Rem. Sensing, Vol. 45, No. 3, 639-648, 2007.

20. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.

21. Bucci, O. M., N. Cardace, L. Crocco, and T. Isernia, "Degree of non-linearity and a new solution procedure in scalar 2-D inverse scattering problems," J. Opt. Soc. Am. A, Vol. 18, 1832-1845, 2001.

22. Crocco, L., M. D'Urso, and T. Isernia, "Testing the contrast source extended born method against real data: The TM case," Inverse Problems, Vol. 21, No. 6, S33-S50, 2005.

23. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "On the effect of support estimation and of a new model in 2-D inverse scattering problems," IEEE Trans. Antennas Propagat., Vol. 55, No. 6, 1895-1899, June 200.

24. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "3D microwave imaging via preliminary support reconstruction: Testing on the Fresnel 2008 database," Inverse Problems, Vol. 25, 024002-024025, 2009.

25. D'Urso, M., T. Isernia, and A. F. Morabito, "On the solution of 2D inverse scattering problems via source type integral equations," IEEE Trans. Geosci. Rem. Sensing, in print, 2009.

26. Kleinman, R. E., G. F. Roach, and P. M. Van Den Berg, "Convergent Born series for large refractive indices," J. Opt. Soc. Am. A, Vol. 7, 890-897, 1990.

27. Yosida, K., Functional Analysis, 6th Ed., Springer-Verlag, Berlin, Germany, 1980.

© Copyright 2010 EMW Publishing. All Rights Reserved