Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 19 > pp. 41-63


By N. Pinel, C. Bourlier, and J. Saillard

Full Article PDF (386 KB)

In the domain of electromagnetic wave propagation in the presence of rough surfaces, the Rayleigh roughness criterion is a widely-used means to estimate the degree of roughness of considered surface. In this paper, this Rayleigh roughness criterion is extended to the case of rough layers. Thus, it provides an interesting qualitative tool for estimating the degree of electromagnetic roughness of rough layers.

N. Pinel, C. Bourlier, and J. Saillard, "Degree of Roughness of Rough Layers: Extensions of the Rayleigh Roughness Criterion and Some Applications," Progress In Electromagnetics Research B, Vol. 19, 41-63, 2010.

1. Rayleigh, L., "On the dynamical theory of gratings," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 79, No. 532, 399-416, Aug. 1907.

2. Rayleigh, L., The Theory of Sound, Dover, New York, 1945(originally published in 1877).

3. Ogilvy, J., Theory of Wave Scattering from Random Surfaces, Institute of Physics Publishing, Bristol and Philadelphia, 1991.

4. Elfouhaily, T. and C.-A. Guerin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random Media, Vol. 14, No. 4, R1-R40, 2004.

5. Ament, W., "Toward a theory of reflection by a rough surface," IRE Proc., Vol. 41, 142-146, 1953.

6. Freund, D., N. Woods, H.-C. Ku, and R. Awadallah, "Forward radar propagation over a rough sea surface: A numerical assessment of the Miller-Brown approximation using a horizontally polarized 3-GHz line source," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1292-1304, Apr. 2006.

7. Yin, Z., H. S. Tan, and F. W. Smith, "Determination of the optical constants of diamond films with a rough growth surface," Diamonds and Related Materials, Vol. 5, No. 12, 1490-1496, 1996.

8. Yin, Z., Z. Akkerman, B. Yang, and F. Smith, "Optical properties and microstructure of CVD diamond films," Diamonds and Related Materials, Vol. 6, No. 1, 153-158, Jan. 1997.

9. Ohlidal, I. and K. Navratil, "Scattering of light from multilayer with rough boundaries," Progress in Optics, E.Wolf (ed.), Vol. 34, 249-331, Elsevier Science, 1995.

10. Aziz, A., W. Papousek, and G. Leising, "Polychromatic reflectance and transmittance of a slab with a randomly rough boundary," Applied Optics, Vol. 38, No. 25, 5422-5428, Sep. 1999.

11. Poruba, A., A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, "Optical absorption and light scattering in microcrystalline silicon thin films and solar cells," Journal of Applied Physics, Vol. 88, No. 1, 148-160, Jul. 2000.

12. Choi, S., S. Lee, and K. H. Koh, "In situ optical investigation of carbon nanotube growth in hot-filament chemical vapor deposition," Current Applied Physics, Vol. 6, 38-42, Aug. 2006.

13. Xiong, R., P. J. Wissmann, and M. A. Gallivan, "An extended Kalman filter for in situ sensing of yttria-stabilized zirconia in chemical vapor deposition," Computers and Chemical Engineering, Vol. 30, No. 10-12, 1657-1669, Sep. 2006.

14. Maury, F. and F.-D. Duminica, "Diagnostic in TCOs CVD processes by IR pyrometry," Thin Solid Films, Vol. 515, No. 24, 8619-8623, Oct. 2007.

15. Remes, Z., A. Kromka, and M. Vanecek, "Towards optical-quality nanocrystalline diamond with reduced non-diamond content," Physica Status Solidi A, Vol. 206, No. 9, 2004-2008, Sep. 2009.

16. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above Gaussian rough surfaces by the parabolic shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.

17. Pinel, N., C. Bourlier, and J. Saillard, "Forward radar propagation over oil slicks on sea surfaces using the Ament model with shadowing effect," Progress In Electromagnetics Research, Vol. 97, 95-126, 2007.

18. Wu, Z.-S., J.-P. Zhang, L. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.

19. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation," Progress In Electromagnetics Research B, Vol. 4, 223-235, 2008.

20. Wang, R. and L. Guo, "Numerical simulations wave scattering from two-layered rough interface," Progress In Electromagnetics Research B, Vol. 10, 163-175, 2008.

21. Boithias, L., Radio Wave Propagation, McGraw-Hill, Ed., North Oxford Academic Publishers, London, UK, 1987.

22. Landron, O., M. Feuerstein, and T. Rappaport, "A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 3, 341-351, Mar. 1996.

23. Didascalou, D., M. Dottling, N. Geng, and W. Wiesbeck, "An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1508-1515, Jul. 2003.

24. Jraifi, A., E. H. Saidi, A. E. Khafaji, and A. E. Rhalami, "Theoretical modelisation of rough surfaces in radio propagation channel," IEEE 3rd International Symposium on Image/Video Communications over Fixed and Mobile Networks, Tunisia, Sep. 2006..

25. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, Vol. 75, 357-381, 2007.

26. Tsang, L. and J. Kong, Scattering of Electromagnetic Waves, Volume III: Advanced Topics, John Wiley & Sons, New York, 2001.

27. Soubret, A., "Diffusion des ondes electromagnetiques par des milieux et des surfaces aleatoires: etude des effets coherents dans le champ diffuse,", Ph.D. dissertation-Universite d'Aix-Marseille2, Marseille, France, 2001.

28. Caron, J., J. Lafait, and C. Andraud, "Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces," Optics Communications, Vol. 207, 17-28, Jun. 2002.

29. Pinel, N., C. Bourlier, and J. Saillard, "Rayleigh parameter of a rough layer: Application to forward radar propagation over oil slicks on sea surfaces under the Ament model," Microwave and Optical Technology Letters, Vol. 49, No. 9, 2285-2290, Sep. 2007.

30. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces, Pergamon Press, Oxford, 1963.

31. Ulaby, F., , R. Moore, and A. Fung, Microwave Remote Sensing: Active and Passive, Vol. 2, Advanced Book Program, Vol. 2 --- Radar Remote Sensing and Surface Scattering and Emission Theory Reading, Addison-Wesley, Massachusetts, 1982.

32. Thorsos, E., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoustical Soc. of America, Vol. 83, No. 1, 78-92, Jan. 1988.

33. Tsang, L., J. Kong, K. Ding, and C. Ao, Scattering of Electromagnetic Waves, Volume I: Theories and Applications, John Wiley & Sons, New York, 2000.

34. Pinel, N. and C. Bourlier, "Scattering from very rough layers under the geometric optics approximation: Further investigation," Journal of the Optical Society of America A, Vol. 25, No. 6, 1293-1306, Jun. 2008.

35. Pinel, N., "Etude de modĀµeles asymptotiques de la diffusion des ondes electromagnetiques par des interfaces naturelles --- Application a une mer recouverte de petrole,", Ph.D. dissertation-Ecole polytechnique de l'universite de Nantes, Nantes, France, Oct. 2006.

36. Roo, R. D. and C.-T. Tai, "Plane wave reflection and refraction involving a finitely conducting medium," IEEE Antennas and Propagation Magazine, Vol. 45, No. 5, 54-61, Oct. 2003.

37. Saillard, M. and G. Toso, "Electromagnetic scattering from bounded or infinite subsurface bodies," Radio Science, Vol. 32, No. 4, 1347-1360, 1997.

© Copyright 2010 EMW Publishing. All Rights Reserved