PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 19 > pp. 65-93

SINGLE-MODE PROPAGATION OF LIGHT IN ONE-DIMENSIONAL ALL-DIELECTRIC LIGHT-GUIDING SYSTEMS

By C. Wang

Full Article PDF (436 KB)

Abstract:
Numerical results are presented for single-mode guidance, which is based on photonic band gap (PBG) effect, in one-dimensional planar all-dielectric light-guiding systems. In such systems there may be two kinds of light-speed point (the intersection of a mode-dispersion curve and the light line of guiding region ambient medium): One is the intrinsic light-speed point that is independent of the guiding region width, and the other is the movable light-speed point that varies with the guiding region width. It is found that the intrinsic light-speed point plays an important role to form the single-mode regime by destroying the coexistence of the lowest guided TM and TE modes that are born with a degeneration point. A mode-lost phenomenon is exposed and this phenomenon suggests a way of how to identify PBG-guided fundamental modes. Quasi-cutofffree index-guided modes in the PBG guiding structures are examined, which appear when the higher-index layers are adjacent to the guiding region and the guiding region width is small. The transverse resonance condition is derived in the Maxwell optics frame, and it is shown that there is a significant revision to the traditional one in the ray optics model. A sufficient and necessary condition for intrinsic light-speed points is given, which provides strong support to the numerical results.

Citation:
C. Wang, "Single-Mode Propagation of Light in One-Dimensional All-Dielectric Light-Guiding Systems," Progress In Electromagnetics Research B, Vol. 19, 65-93, 2010.
doi:10.2528/PIERB09111305

References:
1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science, Vol. 285, No. 5433, 1537-1539, 1999.
doi:10.1126/science.285.5433.1537

4. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all dielectric coaxial waveguide," Science, Vol. 289, No. 5478, 415-419, 2000.
doi:10.1126/science.289.5478.415

5. Ouyang, G., Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibers: Single-mode transmission and dispersion characteristics," Optics Express, Vol. 9, No. 13, 733-747, 2001.
doi:10.1364/OE.9.000733

6. Argyros, A., N. Issa, I. Bassett, and M. A. Van Eijkelenborg, "Microstructured optical fiber for single-polarization air guidance," Optics Letters, Vol. 29, No. 1, 20-22, 2004.
doi:10.1364/OL.29.000020

7. Shephard, J. D., W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Optics Express, Vol. 13, No. 18, 7139-7144, 2005.
doi:10.1364/OPEX.13.007139

8. Murao, T., K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photonics Technology Letters, Vol. 18, No. 15, 1666-1668, 2006.
doi:10.1109/LPT.2006.879546

9. Petrovich, M. N., F. Poletti, A. Van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Optics Express, Vol. 16, No. 6, 4337-4346, 2008.
doi:10.1364/OE.16.004337

10. Yeh, P. and A. Yariv, "Bragg reflection waveguides," Optics Communications, Vol. 19, No. 3, 427-430, 1976.
doi:10.1016/0030-4018(76)90115-2

11. Yeh, P., A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," Journal of the Optical Society of America, Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423

12. Cho, A. Y., A. Yariv, and P. Yeh, "Observation of confined propagation in Bragg waveguides," Applied Physics Letters, Vol. 30, No. 9, 471-472, 1977.
doi:10.1063/1.89452

13. Lekner, J., "Light in periodically stratified media," Journal of the Optical Society of America A, Vol. 11, No. 11, 2892-2899, 1994.
doi:10.1364/JOSAA.11.002892

14. Abolghasem, P. and A. S. Helmy, "Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction," IEEE J. Quantum. Electronics, Vol. 45, No. 6, 646-653, 2009.
doi:10.1109/JQE.2009.2013118

15. West, B. R. and A. S. Helmy, "Properties of the quarterwave Bragg reflection waveguide: Theory," Journal of the Optical Society of America B, Vol. 23, No. 6, 1207-1220, 2006.
doi:10.1364/JOSAB.23.001207

16. Nistad, B., M. W. Haakestad, and J. Skaar, "Dispersion properties of planar Bragg waveguides," Optics Communications, Vol. 265, No. 1, 153-160, 2006.
doi:10.1016/j.optcom.2006.03.014

17. Li, J. and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," Journal of the Optical Society of America B, Vol. 24, No. 8, 1942-1950, 2007.
doi:10.1364/JOSAB.24.001942

18. Lee, K. K. Y., Y. Avniel, and S. G. Johnson, "Design strategies and rigorous conditions for single-polarization single-mode waveguides," Optics Express, Vol. 16, No. 19, 15170-15184, 2008.
doi:10.1364/OE.16.015170

19. Mizrahi, A. and L. Schachter, "Optical Bragg accelerators," Physical Review E, Vol. 70, No. 1, 016505, 2004.
doi:10.1103/PhysRevE.70.016505

20. Zhang, Z., S. G. Tantawi, and R. D. Ruth, "Distributed grating-assisted coupler for optical all-dielectric electron accelerator," Physical Review Special Topics --- Accelerators and Beams, Vol. 8, No. 7, 071302, 2005.
doi:10.1103/PhysRevSTAB.8.071302

21. Wang, C., "Light field distributions in one-dimensional photonic crystal fibers," Journal of the Optical Society of America B, Vol. 26, No. 4, 603-609, 2009.
doi:10.1364/JOSAB.26.000603

22. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE, New York, 1991.

23. Li, J. and K. S. Chiang, "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Optics Communications, Vol. 281, 5797-5803, 2008.
doi:10.1016/j.optcom.2008.08.040

24. Yeh, P., "Electromagnetic propagation in birefringent layered media," Journal of the Optical Society of America, Vol. 69, No. 5, 742-756, 1979.
doi:10.1364/JOSA.69.000742

25. Mizrahi, A. and L. Schachter, "Bragg reflection waveguides with a matching layer," Optics Express, Vol. 12, No. 14, 3156-3170, 2004.
doi:10.1364/OPEX.12.003156

26. Yeh, P., A. Yariv, and E. Marom, "Theory of Bragg fiber," Journal of the Optical Society of America, Vol. 68, No. 9, 1196-1201, 1978.
doi:10.1364/JOSA.68.001196

27. Wang, C. and J. L. Hirshfield, "Theory for wakefields in a multizone dielectric lined waveguide," Physical Review Special Topics --- Accelerators and Beams, Vol. 9, 031301, 2006.
doi:10.1103/PhysRevSTAB.9.031301

28. Wang, C., "Simulation analysis of rectangular dielectric-loaded traveling wave amplifier for THz sources," Physical Review Special Topics --- Accelerators and Beams, Vol. 12, 120701, 2007.
doi:10.1103/PhysRevSTAB.10.120701

29. Mizrahi, A. and L. Schachter, "Mirror manipulation by attractive and repulsive forces of guided waves," Optics Express, Vol. 13, No. 24, 9804-9811, 2005.
doi:10.1364/OPEX.13.009804

30. Okamoto, K., Fundamentals of Optical Waveguides, 2nd edition, Academic Press, Elsevier, 2006.

31. Kong, J. A., Theory of Electromagnetic Waves, John Wiley & Sons, New York, 1975.

32. Wang, C., "A sufficient and necessary condition for intrinsic light-speed points in planar all-dielectric guiding systems,", ShangGang Rep. 03-2009.


© Copyright 2010 EMW Publishing. All Rights Reserved