Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 19 > pp. 385-403


By M. Karimi and F. E. Seraji

Full Article PDF (5,574 KB)

Holey fibers (HF) with their peculiar properties have been used in fabrication of Erbium doped holey fiber amplifiers (EDHFA) for third optical communication window. In this paper, by using scalar effective index method, the analyses are presented to investigate the effects of HF geometrical parameters on the gain performance of the EDHFAs. The hierarchical variations of the parameters, including the air-hole sizes (AHS), propagating modes of the core and cladding, mode field diameter of the signal and pump, would cause alterations in the maximum gain and the optimum lengths of the EDHFAs. By determining the normalized frequency of the HF in wide range variations of the air-hole diameter, air-hole spacing, and air-filling factor (AFF), the single-mode regions for signal and pump wavelengths are obtained, where the maximum gain and the optimum lengths are evaluated. In addition, the influence of pump power and the dopant concentration in terms of the AFF are investigated. It is shown that by using suitable AHS and AFF, one can obtain a higher gain for a shorter optimum length in the EDHFAs.

The obtained results can be a useful tool for design of HF-based optical amplifiers with lesser effects of amplified spontaneous emission and nonlinearities because of shorter optimized length.

M. Karimi and F. E. Seraji, "Effects of Geometry on Amplification Property of Erbium Doped Holey Fiber Amplifiers Using Scalar Effective Index Method," Progress In Electromagnetics Research B, Vol. 19, 385-403, 2010.

1. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.

2. Midrio, M., M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," IEEE J. Ligthwave Technol., Vol. 18, 1031-1037, 2000.

3. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, London, 2003.

4. Peucheret, C., B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett., Vol. 39, No. 12, 919-921, 2003.

5. Zsigri, B., C. Peucheret, M. D. Nielsen, and P. Jeppesen, "Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre," Electron. Lett., Vol. 39, No. 10, 796-798, 2003.

6. Benabid, F., J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-fied hollow-core photonic crystal fiber," Science, Vol. 298, No. 5592, 399-402, 2002.

7. Monro, T. M., W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol., Vol. 12, 854-858, 2001.

8. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, A. TÄunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.

9. Hansen, K. P., "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express, Vol. 11, 1503-1509, 2003.

10. Diddams, S. A., D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett., Vol. 84, 5102-5105, 2000.

11. Park, K. N., T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun., Vol. 266, 541-545, 2006.

12. Shirakawa, A., J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express, Vol. 13, 1221-1227, 2005.

13. Genty, G., M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in micro structured fibers," Opt. Express, Vol. 10, 1083-1098, 2002.

14. Sharping, J. E., M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett, Vol. 27, 1675-1677, 2002.

15. Nielsen, M. D., C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express, Vol. 12, 1372-1376, 2004.

16. Kunimasa, S. and K. Masanori, "Numerical modeling of photonic crystal fibers," IEEE J. Ligthwave Technol., Vol. 23, 3580-3590, 2005.

17. Seraji, F. E. and M. D. Talebzadeh, "Analysis of erbium doped holey fiber using fundamental space filling mode," Chin. Opt. Lett., Vol. 6, 644-647, 2008.

18. Prudenzano, F., "Erbium-doped hole-assisted optical fiber amplifier: Design and optimization," IEEE J. Ligthwave Technol., Vol. 23, 330-340, 2005.

19. Cucinotta, A., F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, "Amplification properties of Er3+-doped photonic crystal fibers," IEEE J. Ligthwave Technol., Vol. 21, 782-788, 2003.

20. Poli, F., A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, "Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs," IEEE J. Select. Topic. Quant. Electron., Vol. 15, 54-60, 2009.

21. Furusawa, K., T. Kogure, T. M. Monro, and D. J. Richardson, "High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber," Opt. Express, Vol. 44, 3452-3458, 2004.

22. Li, Y. F., C. Y. Wang, and M. L. Hu, "A fully vectorial effective index method for photonic crystal fibers: Application to dispersion calculation," Opt. Commun., Vol. 238, 29-33, 2004.

23. Seraji, F. E., M. Rashidi, and M. Karimi, "Characteristics of holey fibers fabricated at different drawing speeds," Chin. Opt. Lett., Vol. 5, 131-134, 2007.

24. Varshney, S. K., M. P. Singh, and R. K. Sinha, "Propagation characteristics of photonic crystal fibers," Opt. Commun., Vol. 24, 192-198, 2003.

25. Li, Y. F., C. Y. Wang, Z. H. Wang, M. L. Hu, and L. Chai, "Analytical solution of the fundamental space filling mode of photonic crystal fibers," Opt. Laser Technol., Vol. 39, 322-326, 2007.

26. Midrio, M., M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," IEEE J. Ligthwave Technol., Vol. 18, 1031-1037, 2000.

27. Desurvire, E., Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994.

28. Giles, C. R. and E. Desurvire, "Modeling erbium-doped fiber amplifiers," IEEE. J. Lightwave Technol., Vol. 9, 271, 1991.

29. Mathews, J. H. and K. K. Fink, Numerical Methods Using Matlab, 4 Ed., Prentice-Hall Inc., 2004.

30. Li, H., A. Mafi, A. Schulzgen, L. Li, V. L. Temyanko, N. Peyghambarian, and J. V. Moloney, "Analysis and design of photonic crystal fibers based on an improved effective-index method," IEEE J. Ligthwave Technol., Vol. 25, 1224-1230, 2007.

31. Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol., Vol. 5, 305-330, 1999.

32. Mortensen, N. A., J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett., Vol. 28, 1879-1881, 2003.

33. Koshiba, M. and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett., Vol. 29, 1739-1741, 2004.

34. Saitoh, K., Y. Tsuchida, M. Koshiba, and N. A. Mortensen, "Endlessly single-mode holey fibers: The influence of core design," Opt. Express, Vol. 13, 10833-10839, 2005.

35. Barnes, W. L., R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross sections of Er3+ doped silica fibers," IEEE J. Quant. Electron., Vol. 27, 1004-1010, 1991.

36. Desurvire, E. and J. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," IEEE J. Ligthwave Technol., Vol. 7, 835-845, 1989.

37. Becker, P. C., N. A. Olsson, and J. R. Simpson, Erbium Doped Fiber Amplifiers Fundamentals and Technology, Academic Press, London, 1999.

38. D'Orazio, A., M. de Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Refinement of Er3+-doped hole-assisted optical fiber amplifier," Opt. Express, Vol. 13, No. 25, 9970-9981, 2005.

39. Myslinsky, P., D. Nguyen, and J. Chrostowski, "Effects of concentration on the performance of erbiumdoped fiber amplifiers," IEEE J. Lightwave Technol., Vol. 15, 112-120, 1997.

© Copyright 2010 EMW Publishing. All Rights Reserved