PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 299-328

ANALYTICAL METHODS IN THE THEORY OF THIN IMPEDANCE VIBRATORS

By M. V. Nesterenko

Full Article PDF (579 KB)

Abstract:
The advantages and disadvantages of more extended approximated analytical methods of the integral equations solution for the current in thin perfectly conducting and impedance vibrators have been investigated in details in this paper. The solutions of the problem about the electromagnetic waves scattering by the thin vibrators with the distributed surface impedance, obtained with the help of the method of expansion of the searched function for the current in a series on small parameter. The method of consistent iterations and asymptotic averaging method are given. The comparison of the calculated results with the experimental data in the case of excitation of the vi-brator in the centre by the point source of voltage is represented.

Citation:
M. V. Nesterenko, "Analytical Methods in the Theory of Thin Impedance Vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

References:
1. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
doi:10.1109/TAP.1966.1138733

2. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas and Propagat., Vol. 16, 176-179, 1968.
doi:10.1109/TAP.1968.1139146

3. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas and Propagat., Vol. 17, 145-151, 1969.
doi:10.1109/TAP.1969.1139408

4. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972.

5. Gorobets, N. N., M. V. Nesterenko, and V. A. Petlenko, "Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide," Telecommunications and Radio Engineering, Vol. 45, No. 4, 110-112, 1990.

6. Andersen, L. S., O. Breinbjerg, and J. T. Moore, "The standard impedance boundary condition model for coated conductors with edges: A numerical investigation of the accuracy for transverse magnetic polarization," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 4, 415-446, 1998.
doi:10.1163/156939398X00863

7. Galdi, V., I. M. Pinto, and , "SDRA approach for higher-order impedance boundary conditions for complex multi-layer coatings on curved conducting bodies ," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1629-1630, 1999.
doi:10.1163/156939399X00033

8. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case ," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
doi:10.1163/156939301X00481

9. Papakanellos, P. J. and C. N. Capsalis, "Numerical analysis of cylindrical dipole antennas using an auxiliary sources model," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 389-407, 2003.
doi:10.1163/156939303767868900

10. Makinen, R. M., "An efficient surface-impedance boundary condition for thin wires of finite conductivity," IEEE Trans. Antennas and Propagat., Vol. 52, 3364-3372, 2004.
doi:10.1109/TAP.2004.836426

11. Nesterenko, M. V., "The electomagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
doi:10.1615/TelecomRadEng.v61.i10.40

12. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas ," IEEE Trans. Antennas and Propagat., Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865

13. Arnold, M. D., "An efficient solution for scattering by a perfectly conducting strip grating," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905

14. Collard, B., M. B. Fares, and B. Souny, "A new formulation for scattering by impedant 3D bodies," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1291-1298, 2006.
doi:10.1163/156939306779276785

15. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

16. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

17. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805

18. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires ," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

19. Wu, J.-J. and T. J. Yang, "Subwavelength microwave guiding by a periodically corrugated metal wire," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 11-19, 2009.
doi:10.1163/156939309787604616

20. Nesterenko, M. V., D. Yu. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
doi:10.2528/PIERB09111105

21. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, Kiev, 1986 (in Russian).

22. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamic volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

23. Leontovich, M. A., "On the approximate boundary conditions for the electromagnetic field on surfaces of good conductive bodies," Investigations of Radiowave Propagation, Printing House of the Academy of Sciences of the USSR, Mosco Academy of Sciences of the USSR, Moscow-Leningrad, 1948 (in Russian).

24. Levin, H. and J. Schwinger, "On the theory of electromagnetic wave di®raction by an aperture in an infinite plane conducting screen," Commun. Pure Appl. Math., 355-391.

25. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

26. Morse, P. M. and H. Feshbach, "Methods of Theoretical Physics," McGraw-Hill, New York, 1953.

27. Tai, C. T., "Dyadic Green's Function in Electromagnetic Theory," Intex Educ. Publ., Scranton, 1971.

28. Tikhonov, A. N. and A. A. Samarsky, "Equations of Mathematical Physics," Nauka, Moscow, 1977 (in Russian).

29. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IRE Trans. Antennas and Propagat., Vol. 9, 563-566, 1961.

30. Felsen, L. B. and N. Marcuvitz, "Radiation and Scattering of Waves," Prentice-Hall, Inc., New Jersey, 1973.

31. King, R. W. P., "The Theory of Linear Antennas," Harv. Univ. Press, Cambr., MA, 1956.

32. King, R. W. P., E. A. Aronson, and C. W. Harrison, "Determination of the admittance and effective length of cylindrical antennas ," Radio Science, Vol. 1, No. 7, 835-850, 1966.

33. Pocklington, H. C., Electrical oscillations in wires, Proc. Cambr. Phil. Soc., Vol. 9, Pt. VII, 324-332, 1897.

34. Brillouin, L., "The antenna problem," Quart. Appl. Math., 201-214, 1943.

35. Mei, K. K., "On the integral equation of thin wire antennas," IEEE Trans. Antennas and Propagat., Vol. 13, 374-378, 1965.

36. Hallen, E., "Theoretical investigations into the transmitting and receiving qualities of antenna ," Nova Acta Reg. Soc. Sci. Ups., Ser. IV, Vol. 11, 1-44, 1938.

37. Leontovich, M. and M. Levin, "To the theory of oscillations excitation in antennas vibrators," Journal of Technical Physics, Vol. 14, 481-506, 1944 (in Russian).

38. Vainshtein, L. A., "The current waves in a thin cylindrical conductor," Journal of Technical Physics, Vol. 29, 65-91, 1959 (in Russian).

39. Glushkovskiy, E. A., B. M. Levin, and E. Y. Rabinovich, "The integral equation for the current in the thin impedance vibrator," Radiotechnika, Vol. 22, 18-23, 1967 (in Russian).

40. Bogolyubov, N. N. and U. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Fluctuations,", Nauka, Moskow, 1974 (in Russian).

41. Philatov, A. N., Asymptotic Methods in the Theory of Differential and Integral-Differential Equations, PHAN, Tashkent, 1974 (in Russian).

42. Kamke, E., Dierentialgleichungen Losungsmethoden und LÄosungen I. Gewohnliche Differentialgleichungen, 6, Verbesserte Auflage, Leipzig, 1959 (in German).

43. King, R. W. P. and L. D. Scott, "The cylindrical antenna as a probe for studying the electrical properties of media," IEEE Trans. Antennas and Propagat., Vol. 19, 406-416, 1971.

44. Lamensdorf, D., "An experimental investigation of dielectric-coated antennas," IEEE Trans. Antennas and Propagat., Vol. 15, 767-771, 1967.

45. Bretones, A. R., R. G. Martin, and I. S. Garca, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas and Propagat., Vol. 43, 591-596, 1995.


© Copyright 2010 EMW Publishing. All Rights Reserved