Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 33-47


By F. Bilotti and C. Vegni

Full Article PDF (284 KB)

In this paper, extending the design technique presented by the authors in a previous work, we propose the study of a new family of polygonal patch antennas for portable devices of communication systems. Such antennas are suitable to be mounted in modern terminals, enabling wideband/multi-frequency operation and new multimedia features. The desired electromagnetic behaviour of the proposed radiators is obtained by adding either shorting posts, properly located between the polygonal patch and the ground plane, or circular slots, drilled at the appropriate position on the patch surface. Circular slots are also useful to easily accommodate a photo-camera in the terminal, in order to enable multimedia services and video calls. Some practical layouts of polygonal patch antennas to be used in: a) modern PDAs and Smart Phones integrating cellular phone operation and wireless functionalities; b) UMTS terminals integrating also GSM functionalities, are, finally, presented. The effectiveness of the proposed designs is confirmed through proper full-wave numerical simulations.

F. Bilotti and C. Vegni, "Design of Polygonal Patch Antennas for Portable Devices," Progress In Electromagnetics Research B, Vol. 24, 33-47, 2010.

1. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peter Peregrinus, London, UK, 1989.

2. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, No. 1, 79-91, Jan.,1992.

3. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," Proc. IEE, Vol. 127, Part H, 231-234, 1980.

4. Kumar, G. and K. C. Gupta, "Non radiating edges and four-edges gap-coupled with multiple resonator, broadband microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 33, 173-178, 1985.

5. Wang, Y. J., C. K. Lee, W. J. Koh, and Y. B. Gan, "Design of small and broad-band internal antennas for IMT-2000 mobile handsets," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 8, 1398-1403, Aug.,2001.

6. Lee, R. Q., K. F. Lee, and J. Bobinchak, "Characteristics of a two-layer electromagnetically coupled rectangular patch antenna," Electron. Lett., Vol. 23, 1070-1072, Sep.,1987.

7. Sabban, A., "A new broadband stacked two-layer microstrip antenna," IEEE Antennas and Propagat. Symp. Dig., 63-66, 1983.

8. Tsao, C. H., Y. M. Hwang, F. Kilburg, and F. Dietrich, "Aperture-coupled patch antennas with wide-bandwidth and dual polarization capabilities," IEEE Antennas and Propagat. Symp. Dig., 936-939, 1988.

9. Ittipiboon, A., B. Clarke, and M. Cuhaci, "Slot-coupled stacked microstrip antennas," IEEE Antennas and Propagat. Symp. Dig., 1108-1111, 1990.

10. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1451-1458, Oct.,1997.

11. Salonen, P., M. Keskilammi, and M. Kivikoski, "Single-feed dual-band planar inverted-F antenna with U-shaped slot," IEEE Trans. Antennas Propagat., Vol. 48, No. 8, 1262-1264, Aug.,2000.

12. Yang, F., X. X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propagat., Vol. 49, No. 7, 1094-1100, Jul.,2001.

13. Wang, Y. J., Y. B. Gan, and C. K. Lee, "A broadband and compact microstrip antenna for IMT-2000, dect, and bluetooth integrated handsets," Microwave Opt. Technol, Lett., Vol. 32, No. 3, 204-207, Feb. 5,2002.

14. Tunski, Z., A. E. Fathy, D. McGee, G. Ayers, and S. Kanamaluru, "Compact multi-band planar antenna for mobile wireless terminals," Proc. of 2001 IEEE AP Symp., Vol. 4, 454-457, Boston, MA, Jul. 8--13,2001.

15. Yin, X. C., C. L. Ruan, C. Y. Ding, and J. H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.

16. Kueathaweekun, W., C. Benjangkaprasert, N. Anantrasirichai, and T.Wakabayashi, "Compact ultra-wideband antenna with dual band-notch design using several parasitic elements," Progress In Electromagnetics Research B, Vol. 19, 1-20, 2010.

17. Jiang, J. B., Z.-H. Yan, and C. Wang, "A novel compact UWB notch-filter antenna with a dual-Y-shaped slot," Progress In Electromagnetics Research Letters, Vol. 14, 165-170, 2010.

18. Bilotti, F. and C. Vegni, "Patch antennas with convex polygonal shape," Proc. International Conference on Electromagnetics in Advanced Applications (ICEAA'01), 485-488, Torino, Italia, Sep. 10--14, 2001.

19. Bilotti, F. and C. Vegni, "Rigorous and efficient full-wave analysis of trapezoidal patch antennas," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1773-1776, Dec. 2001.

20. Bilotti, F., A. Alù, M. Manzini, and L. Vegni, "Design of polygonal patch antennas with a broad-band behavior via a proper perturbation of conventional rectangular radiators ," Proc. 2003 IEEE Antennas Propagat. Int. Symp., Vol. 2, No. 271, 268, Columbus, OH, USA, Jun. 22--27, 2003.

21. Alù, A., F. Bilotti, M. Manzini, and L. Vegni, "Polygonal patch antennas for UMTS and WLAN terminals," Proc. 17th Int. Conf. Appl. Electromag. Comm. (ICECOM'03), 156-159, Dubrovnik, Croatia, Oct. 1--3, 2003.

22. Manzini, M., F. Bilotti, A. Alù, and L. Vegni, "Design of broadband polygonal patch antennas for mobile handsets," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 1, 61-72, 2004.

23. Manzini, M., A. Alù, F. Bilotti, and L. Vegni, "Polygonal patch antennas for wireless communications," IEEE Trans. Vehicular Technology, Vol. 53, No. 5, 1434-1440, Sep., 2004.

24. Pozar, D. M., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 30, No. 6, 1191-1196, Nov., 1982.

25. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 48, No. 1, 41-47, Jan., 2000.

© Copyright 2010 EMW Publishing. All Rights Reserved