PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 203-218

INTEGRAL METHOD FOR A CAPACITANCE MICROSCOPE THAT IS BASED ON CYLINDRIC METALLIC SURFACES

By A. Mendoza-Suarez and F. Villa-Villa

Full Article PDF (1,186 KB)

Abstract:
In this work we consider the problem of obtaining a capacitive image by scanning a "one-dimensional" surface of a closed conductor of arbitrary geometry. To solve our problem we propose a novel integral numerical method. The method is applied to different geometries by considering deterministic surfaces as complex as those with a fractal structure and random rough surfaces with Gaussian statistics. We find that the images obtained by simulating a prototype of a capacitive microscope, strongly depend on the interaction between the object and the probe. Despite this interaction, important information can be obtained regarding the statistical properties of the random roughness of the object surface.

Citation:
A. Mendoza-Suarez and F. Villa-Villa, "Integral Method for a Capacitance Microscope That Is Based on Cylindric Metallic Surfaces," Progress In Electromagnetics Research B, Vol. 21, 203-218, 2010.

References:
1. Bugg, C. D. and P. J. King, "Scanning capacitance microscopy," J. Phys. E: Sci. Instrum., Vol. 21, 147-151, 1988.
doi:10.1088/0022-3735/21/2/003

2. Williams, C. C., W. P. Hough, and S. A. Rishton, "Scanning capacitance microscopy on a 25nm scale," Appl. Phys. Lett., Vol. 55, 203-205, 1989.
doi:10.1063/1.102096

3. Gomez-Monivas, S., J. J. Saenza, R. Carminati, and J. J. Greffet, "Theory of electrostatic probe microscopy: A simple perturbative approach," Appl. Phys. Lett., Vol. 76, 2955-2975, 2000.
doi:10.1063/1.126528

4. Jaensch, S., H. Scmidt, and M. Grundmann, "Quantitative scanning capacitance microscopy," Physica B, Vol. 376-377, 913-915, 2006.
doi:10.1016/j.physb.2005.12.227

5. Garca-Valenzuela, A., N. C. Bruce, and D. Kouznetsov, "An investigation into the applicability of perturbation techniques to solve integral equations for a parallel-plate capacitor with a rough electrode ," J. Phys. D: Appl. Phys., Vol. 31, 240-251, 1998.
doi:10.1088/0022-3727/31/2/011

6. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "Perturbation theory for surface-profile imaging with a capacitive probe," Appl. Phys. Lett., Vol. 77, 2066-2068, 2000.
doi:10.1063/1.1312852

7. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "The lateral resolution for imaging periodic conducting surfaces in capacitive microscopy," J. Phys. D: Appl. Phys., Vol. 33, 2890-2898, 2000.
doi:10.1088/0022-3727/33/22/305

8. Setala, T., M. Kaivola, and A. T. Friberg, "Evanescent and propagation electromagnetic fields in scattering from point-dipole structures," J. Opt. Soc. Am. A, Vol. 18, 678-688, 2001.
doi:10.1364/JOSAA.18.000678

9. Beladi, S., P. Girard, and G. Leveque, "Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions," J. Appl. Phys., Vol. 81, 1023-1030, 1997.
doi:10.1063/1.363884

10. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "Rough-surface capacitor: Approximations of the capacitance with elementary functions," J. Phys. D: Appl. Phys., Vol. 32, 2692-2702, 1999.
doi:10.1088/0022-3727/32/20/317

11. Bruce, N. C. and A. Garca-Valenzuela, "Capacitance measurement of Gaussian random rough surfaces with planar and corrugated electrodes," Meas. Sci. Technol., Vol. 16, 669-676, 2005.
doi:10.1088/0957-0233/16/3/007

12. Marchiando, J. F. and J. J. Kopanski, "Regression procedure for determining the dopant profile in semiconductors from scanning capacitance microscopy data," J. Appl. Phys., Vol. 92, 5798, 2002.
doi:10.1063/1.1512686

13. Giannazzo, F., D. Goghero, V. Raineri, S. Mirabella, and F. Priolo, "Scanning capacitance microscopy on ultranarrow doping profiles in Si," Appl. Phys. Lett., Vol. 83, 2659, 2003.
doi:10.1063/1.1613032

14. Giannazzo, F., D. Goghero, and V. Raineri, "Experimental aspects and modeling for quantitative measurements in scanning capacitance microscopy ," J. Vac. Sci. Technol. B, Vol. 22, 2391, 2004.
doi:10.1116/1.1795252

15. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model ," Progress In Electromagnetic Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

16. Wang, C.-F., L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Efficient capacitance computation for three-dimensional structures based on adaptive integral method," Progress In Electromagnetic Research, Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302

17. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetic Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

18. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data ," Progress In Electromagnetic Research, Vol. 90, 171-182, 2009.
doi:10.2528/PIER09010202

19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd Ed., Cambridge University Press, New York 2003.

20. Mendoza-Suarez, A. and E. R. Mendez, "Light scattering by a reentrant fractal surface," Appl. Opt., Vol. 36, 3521-3531, 1997.
doi:10.1364/AO.36.003521

21. Mendoza-Suarez, A., U. Ruz-Corona, and R. Espinosa-Luna, "E®ects of wall random roughness on TE and TM modes in a hollow conducting waveguide," Opt. Comm., Vol. 238, 291-299, 2004.
doi:10.1016/j.optcom.2004.05.007


© Copyright 2010 EMW Publishing. All Rights Reserved