Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 229-249


By A. Essadqui, J. Ben-Ali, D. Bria, B. Djafari-Rouhani, and A. Nougaoui

Full Article PDF (752 KB)

In the framework of the Green function method, we theoretically study the photonic band structure of one-dimensional superlattice composed of alternating layers of right-handed and left-handed materials (RHM and LHM). The dispersion curves are studied by assuming that the dielectric permittivity and magnetic permeability are frequency dependent in each layer. It is shown that such structures can exhibit new types of electromagnetic modes and dispersion curves that do not exist in usual superlattices composed only of RHM. With an appropriate choice of the parameters, we show that it is possible to realize an absolute (or omnidirectional) band gap for either transverse electric (TE) or transverse magnetic (TM) polarizations of the electromagnetic waves. A combination of two multilayer structures composed of RHM and LHM is proposed to realize, in a certain range of frequency, an omnidirectional reflector of light for both polarizations.

A. Essadqui, J. Ben-Ali, D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Photonic band structure of 1D periodic composite system with left handed and right handed materials by green function approach," Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010.

1. Pendry, J. B., "Photonic crystals and light localization in the 21th century," NATO Science, Vol. 563, 329, C. M. Soukoulis (ed.), Series C, Kluwer, Dordrecht, 2002.

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509, 1968.

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.

4. Marqués, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett., Vol. 89, 138901, 2002.

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Steweat, "\Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwaves and Techniques, Vol. 47, 2075, 2000.

6. Foteinoupoulou, S., E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett., Vol. 90, 107402, 2003.

7. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.

8. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 107401, 2003.

9. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.

10. Smith, D. R., D. Schurig, and J. B. Pendry, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Appl. Phys. Lett., Vol. 81, 2713, 2002.

11. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

12. Feise, M. W., P. J. Bevelacqua, and J. B. Schneider, "Effects of surface waves on the behaviour of perfect lenses," Phys. Rev. B, Vol. 66, 035113, 2002.

13. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett., Vol. 82, No. 161, 2003.

14. Zhang, Z. M. and C. J. Fu, "Unusual photon tunnelling in the presence of a layer with a negative refractive index," Appl. Phys. Lett., Vol. 80, 1097, 2002.

15. Enoch, S., G. Tayeb, P. Sabourous, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, 2002.

16. Nefedov, I. S. and S. A. Tretyakov, "Photonic band gap structure containing metamaterial with negative permittivity and permeability," Phys. Rev. E, Vol. 66, 036611, 2002.

17. Li, J., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, 083901, 2003.

18. Bria, D., B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. ElBoudouti, and A. Nougaoui, "Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials," Phys. Rev. E, Vol. 69, 066613, 2004.

19. Wu, L., S. He, and L. Shen, "Band structure for a one-dimensional photonic crystal containing left-handed materials," Phys. Rev. B, Vol. 67, 235103, 2003.

20. Xiang, Y., X. Dai, and S. Wen, "Omnodirectional gaps of one-dimensional potonic crystals containing indefinite metamaterials," J. Opt. Soc. Am. B, Vol. 24, 2033, 2010.

21. Zhang, F., D. P. Gaillot, C. Croënne, E. Lheurette, X. Mélique, and D. Lippens, "Low-loss left-anded metamaterials at millimeter waves," Appl. Phys. Let., Vol. 93, 083104, 2008.

22. Xinag, Y., X. Dai, S. Wen, and D. Fan, "Properties of omnidirectional gap and defect mode of one-dimensionla photonic crystal containing indefinite metamaterials with hyperbolic dispersion," J. Appl. Phys., Vol. 102, 093107, 2007.

23. Sun, W.-H., Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, "Omnidirectional transparency induced by matched impedance disordered metamaterials," J. Appl. Phys., Vol. 106, 013104, 2009.

24. De Dios-Leyva, M. and J. C. Drake-Pérez, "Zero-width band gap associated with the n = 0 condition in photonic crystals containing left-handed materials," Phys. Rev. E, Vol. 79, 036608, 2009.

25. Fink, J. N., S. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "Dielectric omnidirectional reflector," Science, Vol. 282, 1679, 1998.

26. Dowling, J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841, 1998.

27. Bria, D., B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, "Omnidirectional optical mirror in a cladded-superlattice structure," J. Appl. Phys., Vol. 91, 2569, 2002.

28. Bria, D. and B. Djafari-Rouhani, "Omnidirectional elastic band gap infinite lamellar structures," Phys. Rev. E, Vol. 66, 056609, 2002.

29. Xiang, Y., L. Ran, J. T. Huangfu, H. S. Chen, and J. A. Kong, "Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials," Opt. Express, Vol. 14, 2223, 2006.

30. Aylo, R., P. P. Banerjee, and G. Nehmetallah, "Perturbed multilayered structures of positive and negative index materials," J. Opt. Soc. Am. B, Vol. 27, 599, 2010.

31. Dobrzynski, L., "Interface response theory of continuous composite materials," Surf. Sci., Vol. 180, 489, 1987.

32. Ouchani, N., D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Transverse-electric/Transversemagnetic polarization converter using 1D finite biaxial photonic crystal," J. Opt. Soc. Am. A, Vol. 24, No. 9, 2710, 2007.

33. Ruppin, R., "Surface polaritons of a left-handed material slab," J. Phys. Condens. Matter, Vol. 13, 1811, 2001.

34. Shadrivov, I. V., N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, "Defect modes and transmission properties of left-handed bandgaps structures," Phys. Rev. E, Vol. 70, 046615, 2004.

35. Cocoletzi, G. H., L. Dobrzynski, B. Djafari-Rouhani, H. AlWahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," J. Phys.: Condens. Matter, Vol. 18, 3683, 2006.

© Copyright 2010 EMW Publishing. All Rights Reserved