PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 329-346

FOCAL REGION FIELDS OF CASSEGRAIN SYSTEM PLACED IN HOMOGENEOUS CHIRAL MEDIUM

By M. Q. Mehmood, M. J. Mughal, and T. Rahim

Full Article PDF (445 KB)

Abstract:
In this paper the high frequency electromagnetic field expressions for two dimensional Cassegrain system embedded in a chiral medium are presented. Due to failure of Geometrical Optics (GO) at the caustic region, Maslov's method is used to find the field expressions. Two different cases have been analyzed. Firstly, the chirality parameter () is adjusted to support positive phase velocity (PPV) for both left circularly polarized (LCP) and right circularly polarized (RCP) modes traveling in the medium. Secondly, is adjusted such that one mode travels with PPV, and the other mode travels with negative phase velocity (NPV). The results for both cases are presented in the paper.

Citation:
M. Q. Mehmood, M. J. Mughal, and T. Rahim, "Focal Region Fields of Cassegrain System Placed in Homogeneous Chiral Medium," Progress In Electromagnetics Research B, Vol. 21, 329-346, 2010.

References:
1. Zouhdi, S., A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, 2008.

2. Mackay, T. G. and A. Lakhtakia, "Simultaneously negative and positive phase velocity propagation in an isotropic chiral medium," Microwave Opt. Technol. Lett., Vol. 49, 1245-1246, 2007.
doi:10.1002/mop.22434

3. Lakhtakia, A., M. W. McCall, W. S. Weiglhofer, J. Gerardin, and J. Wang, "On mediums with negative phase velocity: A brief overview," Arch. Elektr. Ueber., Vol. 56, 407-410, 2002.

4. Maslov, V. P., "Perturbation theory and asymptotic methods," Izdat. Moskov. Gos. Univ., Moscow, 1965 (in Russian).

5. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Paraboloidal reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Progress In Electromagnetics Research, Vol. 92, 223-234, 2009.
doi:10.2528/PIER09031809

6. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602

7. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Fields around the focal region of a paraboloidal reflector placed in isotropic chiral medium," Progress In Electromagnetics Research B, Vol. 15, 57-76, 2009.
doi:10.2528/PIERB09031002

8. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium ," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703

9. Rahim, T. and M. J. Mughal, "Spherical reflector in chiral medium supporting positive phase velocity and negative phase velocity simultaneously," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1665-1673, 2009.

10. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "What happens to plane waves at the planar interfaces of mirror conjugated chiral media," Journal of the Optical Society of America A: Optics, Image Science, and Vision, Vol. 6, No. 1, 2326, January 1989.
doi:10.1364/JOSAA.6.000023

11. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of a cylindrical reflector placed in chiral medium ," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401

12. Faryad, M. and Q. A. Naqvi, "Cylindrical reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 563-572, 2008.
doi:10.1163/156939308784150344

13. Aziz, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in two dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 71, 227-241, 2007.


© Copyright 2010 EMW Publishing. All Rights Reserved