Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 39-52


By B. Dastmalchi, R. Kheradmand, A. Hamidipour, A. Mohtashami, K. Hingerl, and J. Zarbakhsh

Full Article PDF (2,973 KB)

Recently, we have introduced a numerical method for calculating local dispersion of arbitrary shaped optical waveguides, which is based on the Finite-Difference Time-domain and filter diagonalization technique. In this paper we present a study of photonic crystal waveguides at interfaces and double hetero-structure waveguides. We have studied the waveguide stretching effect, which is the change in lattice constant of photonic crystals along waveguiding direction. Hybrid modes at photonic crystal heterostructure interfaces are observed, which are the results of superposition of existing modes in adjacent waveguides. The dispersion at the interfaces of a double hetero-structure waveguide tends to the dispersion of outer waveguides. The effective area still holding the dispersion of the middle waveguide is shorter than the geometrical length of the middle waveguide. The results of this study present a clear picture of dispersion at interfaces and the transmission in photonic crystal hetero-structures.

B. Dastmalchi, R. Kheradmand, A. Hamidipour, A. Mohtashami, K. Hingerl, and J. Zarbakhsh, "Local Dispersion of Guiding Modes in Photonic Crystal Waveguide Interfaces and Hetero-Structures," Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010.

1. Vuckovic, J., M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A, Vol. 66, 9, 2002.

2. Zarbakhsh, J., A. Mohtashami, and K. Hingerl, "Geometrical freedom for constructing variable size photonic bandgap structures," Opt. Quantum Electron., Vol. 39, 395-405, 2007.

3. Srinivasan, K. and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," Opt. Express, Vol. 11, 579-593, 2003.

4. Zarbakhsh, J., F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, "Arbitrary angle waveguiding applications of two-dimensional curvilinear-lattice photonic crystals," Appl. Phys. Lett., Vol. 84, 4687-4689, 2004.

5. Noda, S., M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron., Vol. 38, 726-735, 2002.

6. Vuckovic, J., D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, "Generation and manipulation of nonclassical light using photonic crystals," Physica E, Vol. 32, 466-470, 2006.

7. Meade, R. D., A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band-gap materials --- low-loss bends and high Q-cavities," J. Appl Phys., Vol. 75, 4753-4755, 1994.

8. Akahane, Y., T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, "Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response," Opt. Express, Vol. 13, 2512-2530, 2005.

9. Chutinan, A. and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E, Vol. 71, 19, 2005.

10. Mohtashami, A., J. Zarbakhsh, and K. Hingerl, "Advanced impedance matching in photonic crystal waveguides," Opt. Quantum Electron., Vol. 39, 387-394, 2007.

11. Chaloupka, J., J. Zarbakhsh, and K. Hingerl, "Local density of states and modes of circular photonic crystal cavities," Phys. Rev. B, Vol. 72, 5, 2005.

12. Song, B. S., S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater., Vol. 4, 207-210, 2005.

13. O'Brien, D., M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, "Coupled photonic crystal heterostructure nanocavities," Opt. Express, Vol. 15, 1228-1233, 2007.

14. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures --- resonant tunneling, waveguides and filters," J. Opt. A --- Pure Appl. Opt., Vol. 4, S242-S246, 2002.

15. Song, B. S., T. Asano, and S. Noda, "Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities," New J. Phys., Vol. 8, 12, 2006.

16. Song, B. S., S. Noda, and T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science, Vol. 300, 1537-1537, 2003.

17. Kramper, P., M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett., Vol. 92, 4, 2004.

18. Moreno, E., F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B, Vol. 69, 4, 2004.

19. Dastmalchi, A. M., K. Hingerl, and J. Zarbakhsh, "Method of calculating local dispersion in arbitrary photonic crystal waveguides," Opt. Lett., Vol. 32, 2915-2917, 2007.

20. Mandelshtam, V. A., "FDM: The filter diagonalization method for data processing in NMR experiments," Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 38, 159-196, Mar. 19, 2001.

21. Wall, M. R. and D. Neuhauser, "Filter-diagonalization --- A new method for the computation of eigenstates," Abstracts of Papers of the American Chemical Society, Vol. 209, 249, Apr. 2, 1995.

22. Busch, K., G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. --- Rev. Sec. Phys. Lett., Vol. 444, 101-202, 2007.

23. Ramos-Mendieta, F. and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane," Phys. Rev. B, Vol. 59, 15112-15120, 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved