PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 285-301

THE CONDUCTANCE BANDWIDTH OF AN ELECTRICALLY SMALL ANTENNA IN ANTIRESONANT RANGES

By O. B. Vorobyev

Full Article PDF (216 KB)

Abstract:
Accurate approximations of the conductance and the conductance bandwidth of an electrically small antenna valid in resonant and antiresonant ranges were found. It is shown that the conductance bandwidth of an efficient antenna tuned on maximal power of radiation is inversely proportional to the magnitude of the frequency derivative of the input impedance |Z'cd)| of the antenna at frequency of maximal conductance. That is a generalization of the well known relationship according to which, the conductance bandwidth of an antenna tuned on resonance in resonant ranges is inversely proportional to the magnitude of the frequency derivative of the input reactance of the antenna |X'00)| at resonant frequency. Obtained approximate formulas display inverse proportionality of the conductance bandwidth to the approximate quality factor of the antenna throughout resonant and antiresonant ranges. A differential definition of the fractional conductance bandwidth was formulated, which is convenient for the case of closely spaced resonances of an antenna. As an example, numerical calculations for oblate spheroidal and spherical antennas in shells with negative permittivity in resonant and antiresonant ranges was used to confirm accuracy of the obtained approximations of the conductance and the conductance bandwidth of an electrically small antenna.

Citation:
O. B. Vorobyev, "The Conductance Bandwidth of an Electrically Small Antenna in Antiresonant Ranges," Progress In Electromagnetics Research B, Vol. 24, 285-301, 2010.
doi:10.2528/PIERB10061206

References:
1. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, Apr., 2005.
doi:10.1109/TAP.2005.844443

2. Fante, R. L., "Quality factor of general ideal antennas," IEEE Trans. Antennas Propag., Vol. 17, No. 2, 151-155, Mar., 1969.
doi:10.1109/TAP.1969.1139411

3. Rhodes, D. R., "On the quality factor of strip and line source antennas and its relationship to super directivity ratio," IEEE Trans. Antennas Propag., Vol. 20, No. 3, 318-325, May, 1972.
doi:10.1109/TAP.1972.1140191

4. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, May, 1996.
doi:10.1109/8.496253

5. Collin, R. E. and S. Rothschild, "Evaluation of antenna Q," IEEE Trans. Antennas Propag., Vol. 17, No. 1, 23-27, Jan., 1964.
doi:10.1109/TAP.1964.1138151

6. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

7. Vassiliadis, A. and R. L. Tanner, "Evaluating the impedance broadbanding of antennas," IEEE Trans. Antennas Propag., Vol. 6, No. 3, 226-231, Jul., 1958.

8. Stuart, H. R., S. R. Best, and A. D. Yaghjian, "Limitations in relating quality factor to bandwidth in a double resonance small antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 6, No. 6, 460-463, 2007.
doi:10.1109/LAWP.2007.905018

9. Vorobyev, O. B., "Efficient electrically small oblate spheroidal and spherical antennas in shells with negative permittivity," Progress In Electromagnetics Research B, Vol. 21, 151-170, 2010.

10. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1644-1653, Jun., 2006.
doi:10.1109/TAP.2006.875498

11. Stén, J. C.-E., "Radiation Q of a small antenna enclosed in an oblate spheroidal volume: Transverse-to-axis polarisation," AEÜ --- Int. J. Electron. Commun., Vol. 57, No. 3, 201-205, 2003.
doi:10.1078/1434-8411-54100162

12. Wang, Y., J. Z. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra wide-band antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
doi:10.2528/PIER08032303

13. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, Jul., 2006.
doi:10.1109/TAP.2006.877179

14. Adams, J. J. and J. T. Bernhard, "Tuning method for a new electrically small antenna with low Q," IEEE Antennas Wireless Propag. Lett., Vol. 8, 303-306, 2009.
doi:10.1109/LAWP.2009.2015437

15. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, 1047-1053, 2005.
doi:10.1109/TAP.2004.842600

16. Best, S. R., "A comparison of electrically small spherical helix and spherical resonator antennas," The Second European Conference on Antennas and Propagation, EuCAP, 1-6, Nov. 11--16, 2007.


© Copyright 2010 EMW Publishing. All Rights Reserved