PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 69-100

CHANNEL MEASUREMENTS AND MODELLING IN A MILITARY CARGO AIRPLANE

By C. G. Spiliotopoulos and A. G. Kanatas

Full Article PDF (548 KB)

Abstract:
The results of an ultrawideband (UWB) measurement campaign carried out in a Hercules C-130 military cargo airplane are presented. The environment encompasses several metallic surfaces resulting in a large number of multipath components. Path-loss factor n representing the distance dependence of the channel path-loss is calculated for various frequency centers and bandwidths. A path-gain calculation model based on the concept of seperability of distance and frequency variables is proposed and comparison to measurements is given. Furthermore, time dispersion parameters, namely mean excess delay and root mean square (r.m.s.) delay spread are examined and their dependence on transmitter-receiver antennas separation is investigated. A power law is then employed to model the relation between the number of multipath components and the r.m.s delay spread. The temporal correlation between adjacent path amplitudes is found to be negligible. A modified Saleh-Valenzuela model is invoked to describe the clustering of multipaths, where a different power decay factor is used for the rays of the first cluster as opposed to subsequent clusters. Moreover, the Weibull distribution models the small scale channel fading with a lognormally distributed shape parameter. The average values of this parameter imply severe fading conditions. Finally, simulation results of the proposed statistical model are compared to measured data demonstrating reasonable agreement.

Citation:
C. G. Spiliotopoulos and A. G. Kanatas, "Channel Measurements and Modelling in a Military Cargo Airplane," Progress In Electromagnetics Research B, Vol. 26, 69-100, 2010.
doi:10.2528/PIERB10080604

References:
1. Federal Communication Commission, First Report and Order, 12 FCC 02-48, April 2002.

2. Ghassemzadeh, S. S., R. Jana, C. Rice, W. Turin, and V. Tarokh, "Measurement and Modeling of an ultra-wide bandwidth indoor channel," IEEE Trans. on Commun., Vol. 52, No. 10, 1786-1796, 2004.
doi:10.1109/TCOMM.2003.820755

3. Prettie, C., D. Cheung, L. Rusch, and M. Ho, "Spatial correlation of UWB signals in a home environment," IEEE Conf. on Ultra Wideband Systems and Technologies, 65-69, May 2002.
doi:10.1109/UWBST.2002.1006320

4. Keignart, J., C. Abou-Rjeily, C. Delaveaud, and N. Daniele, "UWB SIMO channel measurements and simulation," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 4, 1812-1819, Jun. 2006.
doi:10.1109/TMTT.2006.872080

5. Kunisch, J. and J. Pamp, "Measurement results and modeling aspects for the UWB radio channel," IEEE Conf. on Ultra Wideband Systems and Technologies, 19-23, May 2002.
doi:10.1109/UWBST.2002.1006310

6. Street, A., L. Lukama, and D. Edwards, "Use of VNAs for wideband propagation measurements," IEE Proc., Vol. 148, No. 6, 411-415, Dec. 2001.
doi:10.1049/ip-com:20010639

7. Hovinen, V., M. Hämäläinen, and T. Pätsi, "Ultra wideband indoor radio channel models: Preliminary results," IEEE Conf. on Ultra Wideband Systems and Technologies, 75-79, May 2002.
doi:10.1109/UWBST.2002.1006322

8. Chong, C. C., Y. E. Kim, S. K. Yong, and S. S. Lee, "Statistical characterization of the UWB propagation channel in indoor residential environment," Wiley J. Wireless Commun. Mobile Computing, Vol. 5, No. 5, 503-512, Aug. 2005.
doi:10.1002/wcm.310

9. Alvarez, A., G. Valera, M. Lobeira, R. Torres, and J. L. Garcia, "Ultra wideband channel model for indoor environments," Journal of Commun. Networks, Vol. 5, No. 4, 309-318, Dec. 2003.

10. Cassioli, D., A. Durantini, and W. Ciccognani, "The role of path loss on the selection of the operating bands of UWB systems," Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Vol. 4, 2787-2791, Barcelona, Spain, Sep. 2004.

11. Buehrer, R., W. Davis, A. Safaai-Jazi, and D. Sweeney, Ultra-wideband propagation measurements and modeling, DARPA NETEX Final Technical Report, Jan. 2004.

12. Molisch, A. F., "Ultrawideband propagation channels-theory, measurements and modeling," IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 1528-1545, Sep. 2005.
doi:10.1109/TVT.2005.856194

13. Saleh, A. and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Sel. Areas Commun., Vol. 5, No. 2, 128-137, Feb. 1987.
doi:10.1109/JSAC.1987.1146527

14. Molisch, A. F., D. Cassioli, C. C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, "A comprehensive standardized model for UWB propagation channels," IEEE Trans. Antennas and Propagation, Vol. 54, No. 11, 3151-3166, 2006.
doi:10.1109/TAP.2006.883983

15. Ahmadi-Shokouh, J. and R. C. Qiu, "Ultra-wideband (UWB) communications channel measurements --- A tutorial review," Int. J. Ultra Wideband Communications and Systems, Vol. 1, No. 1, 11-31, 2009.
doi:10.1504/IJUWBCS.2009.026447

16. Chuang, J., N. Xin, H. Huang, S. Chiu, and D. G. Michelson, "UWB radio wave propagation within the passenger cabin of a boeing 737--200 aircraft," Proc. 65th IEEE Veh. Tech. Conf., VTC2007-Spring, 496-500, Apr. 22--25, 2007.

17. Chiu, S., J. Chuang, and D. G. Michelson, "Characterization of UWB channel impulse responses within the passenger cabin of a boeing 737--200 aircraft," IEEE Trans on Antennas and Propagation, Vol. 58, No. 3, 935-945, Mar. 2010.
doi:10.1109/TAP.2009.2037707

18. Chiu, S. and D. G. Michelson, "Effect of human presence on UWB radiowave propagation within the passenger cabin of a midsize airliner," IEEE Trans on Antennas and Propagation, Vol. 58, No. 3, 917-926, Mar. 2010.
doi:10.1109/TAP.2009.2039326

19. Kaouris, A., M. Zaras, M. Revithi, N. Moraitis, and P. Constantinou, "Propagation measurements inside a B737 aircraft for in-cabin wireless networks," Proc. IEEE VTC2008-Spring, 2932-2936, May 11--14, 2008.

20. Spiliotopoulos, C. and A. G. Kanatas, "Path-loss and time-dispersion parameters of UWB signals in a military airplane," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 790-793, 2009.
doi:10.1109/LAWP.2009.2026591

21. Promwong, S., W. Hachitani, and J.-I. Takada, "Free space link budget evaluation of UWB-IR systems," International Workshop on Ultra Wideband Systems 2004, Joint with Conference on Ultrawideband Systems and Technologies, 312-316, May 18--21, 2004.

22. Karedal, J., S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, "A measurement-based statistical model for industrial ultra-wideband channels," IEEE Trans. on Wireless Commun., Vol. 6, No. 8, 3028-3037, Aug. 2007.
doi:10.1109/TWC.2007.051050

23. Porrat, D. and Y. Serfaty, "Sub-band analysis of NLOS indoor channel responses," Proc. IEEE PIMRC2008, 1-5, Sep. 15--18, 2008.

24. Qiu., R. C and I. Lu, "Multipath resolving with frequency dependence for broadband wireless channel modeling," Proc. IEEE Int. Conf. Commun., 277-281, Dallas, TX, Jun. 1996.

25. Siwiak, K., H. L. Bertoni, and S. M. Yano, "Relation between multipath and wave propagation attenuation," IEE Electronic Letters, Vol. 39, 142-143, Jan. 2003.
doi:10.1049/el:20030026

26. Chong, C., Y. Kim, and S. Lee, "UWB Indoor propagation channel measurements and data analysis in various types of high-rise apartments," Proc. IEEE Veh. Tech. Conf., VTC2004-Fall, 2004.

27. Cassioli, D., M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: From statistical model to simulations," IEEE J. Sel. Areas Commun., Vol. 20, No. 6, 1247-1257, 2002.
doi:10.1109/JSAC.2002.801228

28. Chong, C. and S. K. Yong, "A generic statistical-based UWB channel model for high-rise apartments," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 8, 2389-2399, Aug. 2005.
doi:10.1109/TAP.2005.852505

29. Ghassemzadeh, S. S., L. J. Greenstein, T. Sveinsson, and V. Tarokh, "UWB delay profile models for residential and commercial indoor environments," IEEE Trans. on Vehicular Technology, Vol. 54, No. 4, 1235-1244, Jul. 005.
doi:10.1109/TVT.2005.851379

30. Greenstein, L. J., S. S. Ghassemzadeh, S.-C. Hong, and V. Tarokh, "Comparison study of UWB indoor channel models," IEEE Trans. on Wireless Communications, Vol. 6, No. 1, Jan. 2007.
doi:10.1109/TWC.2007.04691

31. Alvarez, A., G. Valera, M. Lobeira, R. Torres, and J. L. Garcia, "New channel impulse response model for UWB indoor system simulations," Proc. VTC 2003 Spring, 1-5, 2003.

32. Pagani, P. and P. Pajusco, "Experimental assessment of the UWB channel variability in a dynamic indoor environment," Proc. IEEE PIMRC, Vol. 4, 2973-2977, 2004.

33. Braun, W. R. and U. Dersch, "A physical mobile radio channel model," IEEE Trans. on Vehicular Technology, Vol. 40, No. 2, 472-482, May 1991.
doi:10.1109/25.289429

34. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan, New York, 1963.

35. Yacoub, M. D., "The α-μ distribution: A physical fading model for the stacy distribution," IEEE Trans. on Vehicular Technology, Vol. 56, No. 1, 27-34, Jan. 2007.
doi:10.1109/TVT.2006.883753


© Copyright 2010 EMW Publishing. All Rights Reserved