Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 237-256


By J. Li, Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen

Full Article PDF (1,631 KB)

Based on the vectorial angular spectrum representation and the method of stationary phase, internal vectorial structures of a phase-flipped Gauss (PFG) beam diffracting in the far field are derived in analytical forms. The energy flux for the TE term, TM term and the whole beam are derived and depicted by numerical examples. Influences of the f parameter on the whole energy flux distributions are analyzed. Discrepancies of the whole energy flux distributions between the paraxial and non-paraxial cases are shown in detailed manners. Furthermore, influences of the f parameter on discrepancies between two cases are also studied.

J. Li, Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Vectorial Structure of a Phase-Flipped Gauss Beam in the Far Field," Progress In Electromagnetics Research B, Vol. 26, 237-256, 2010.

1. Delaubert, V., D. A. Shaddock, P. K. Lam, B. C. Buchler, H. Bachor, and D. E. McClelland, "Generation of a phase-fiipped Gaussian mode for optical measurements," J. Opt. A: Pure Appl. Opt., Vol. 4, 393-399, 2002.

2. Treps, N., U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H. Bachor, and C. Fabre, "Surpassing the standard quantum limit for optical imaging using nonclassical multimode light," Phys. Rev. Lett., Vol. 20, 203601, 2002.

3. Banerji, J., "Propagation of a phase flipped Gaussian beam through a paraxial optical ABCD system," Opt. Commun., Vol. 258, 1-8, 2006.

4. Gao, Z. and B. Lü, "Non-paraxial propagation of phase-flipped Gaussian beams," Chin. Phys. B, Vol. 17, 943-949, 2008.

5. Gao, Z. and B. Lü, "Phase-flipped Hermite-Gaussian beams and their propagation beyond the paraxial approximation," Opt. Commun., Vol. 279, 130-140, 2007.

6. Herrero, R. M., P. M. Mejias, S. Bosch, and A. Carnicer, "Vectorial structure of non-paraxial electromagnetic beams," J. Opt. Soc. Am. A, Vol. 18, 1678-1680, 2001.

7. Mejias, P. M., R. M. Herrero, G. Piquero, and J. M. Movilla, "Parametric characterization of the spatial structure of non-uniformly polarized laser beams," Prog. Quantum Electron., Vol. 26, 65-130, 2002.

8. Guo, H., J. Chen, and S. Zhuang, "Vector plane wave spectrum of an arbitrary polarized electromagnetic wave," Opt. Express, Vol. 14, 2095-2100, 2006.

9. Zhou, G., "Analytical vectorial structure of Laguerre-Gaussian beam in the far field," Opt. Lett., Vol. 31, 2616-2618, 2006.

10. Deng, D. and Q. Guo, "Analytical vectorial structure of radially polarized light beams," Opt. Lett., Vol. 32, 2711-2713, 2007.

11. Zhou, G., "Far-field structure of a linearly polarized plane wave diffracted by a rectangular aperture," Opt. Laser Technol., Vol. 41, 504-508, 2009.

12. Liu, D. and Z. Zhou, "Analytical vectorial structure of the anomalous hollow beam in the far field," Opt. Laser Technol., Vol. 42, 640-646, 2010.

13. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Vectorial structural characteristics of four-petal Gaussian beams in the far field," Eur. Phys. J. Appl. Phys., Vol. 50, 30702, 2010.

14. Zhou, G., "Analytical vectorial structure of controllable dark-hollow beams in the far field," J. Opt. Soc. Am. A, Vol. 26, 1654-1660, 2009.

15. Zhou, G. and F. Liu, "Far field structural characteristics of cosh-Gaussian beam," Opt. Laser Technol., Vol. 40, 302-308, 2008.

16. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Analytical vectorial structure of Hermite-cosine-Gaussian beam in the far field," Opt. Laser Technol., Vol. 43, 152-157, 2010.

17. Tang, H., X. Li, G. Zhou, and K. Zhu, "Vectorial structure of helical hollow Gaussian beams in the far field," Opt. Commun., Vol. 282, 478-481, 2009.

18. Zhou, G. and J. Zheng, "Vectorial structure of Hermite-Laguerre-Gaussian beam in the far field," Opt. Laser Technol., Vol. 40, 858-863, 2008.

19. Carter, W. H., "Electromagnetic field of a Gaussian beam with an elliptical cross section," J. Opt. Soc. Am., Vol. 62, 1195-1201, 1972.

20. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, Cambridge, 1995.

21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972.

22. Nemoto, S., "Nonparaxial Gaussian beams," Appl. Opt., Vol. 29, 1940-1946, 1990.

23. Mansuripur, M., "Distribution of light at and near the focus of high-numerical-aperture objectives," J. Opt. Soc. Am. A, Vol. 3, 2086-2093, 1986.

24. Rohrbach, A. and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt., Vol. 41, 2494-2507, 2002.

25. Leutenegger, M., R. Rao, R. A. Leitgeb, and T. Lasser, "Fast focus field calculations," Opt. Express, Vol. 14, 11277-11291, 2006.

26. Boruah, B. R. and M. A. A. Neil, "Focal field computation of an arbitrary polarized beam using fast Fourier transforms," Opt. Commun., Vol. 282, 4660-4667, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved