Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 273-288


By N. Kumar, U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha

Full Article PDF (861 KB)

The complete design of 35 GHz, 200 kW gyrotron for various material processing and heating applications is presented in this article. The components of the device, such as Magnetron Injection Gun, interaction cavity, collector and RF window, are designed for the TE03 mode. Various in-house developed codes (GCOMS, MIGSYN and MIGANS) and commercially available codes (MAGIC, EGUN and CST-MS) are used for the design purpose. A thorough sensitivity analysis of the gyrotron components are also carried out. The designed device shows the capability to generate more than 200 kW of output power with more than 40% of efficiency.

N. Kumar, U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz Gyrotron for Material Processing Applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.

1. Thumm, M., "State-of-the-art of high power gyro-devices and free electron masers update 2004,", FZK, KIT, Germany.

2. Thumm, M., "Progress in gyrotron development," Fusion Engineering and Design, Vol. 66-68, 69-90, 2003.

3. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. Microwave Theory. Tech., Vol. 25, 514-521, 1977.

4. Thumm, M., "MW gyrotron development for fusion plasma applications," Plasma Physics and Controlled Fusion, Vol. 45, A143, 2003.

5. Thumm, M., "Novel applications of millimeter and submillimeter wave gyro-devices," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 377-386, 2001.

6. Gold, S. H. and G. S. Nusinovich, "Review of high-power microwave source research," Rev. Sci. Instrum, Vol. 68, 3945-3974, 1997.

7. Hirotaa, M., M. C. Valecillosb, M. E. Britoc, K. Hiraob, and M. Toriyamad, "Grain growth in millimeter wave sintered silicon nitride ceramics," Journal of the European Ceramic Society, Vol. 24, 3337-3343, 2004.

8. Bykov, Y. V., A. G. Eremeev, V. V. Holoptsev, K. I. Rybakov, and V. E. Semenov, "High temperature processing of materials using millimeter-wave radiation," Proc. MSMW Symposium, Kharkov, Ukraine, 1998.

9. Felich, K. L., et al., "Characteristics and applications of fast-wave gyro-devices," Proceeding of the IEEE, Vol. 87, 752, 1999.

10. Miyake, S., "Millimeter-wave materials processing in Japan by high-power gyrotron," IEEE Trans. Plasma Sci., Vol. 31, 1010-1015, 2003.

11. Toshiyuki, Y. M., T. Matsumoto, and S. Miyake, "Fabrication of bulk ceramics by high power millimeter wave radiation," Japanese J. Applied Physics, Vol. 40, 1080-1082, 2001.

12. Liu, P.-K., E. Borie, and M. V. Kartikeyan, "Design of a 24 GHz, 25-50kW Technology gyrotron operating at the second harmonic," Int. J. Infrared Milli. Waves, Vol. 21, 1917-1943, 2000.

13. Bykov, Y., G. Denisov, A. G. Eremeev, M. Glyavin, V. V. Holoptsev, I. V. Plotnikov, and V. Pavlov, "3.5kW 24 GHz compact gyrotron system for microwave processing of materials," Advances in Microwave and Radio Frequency Processing, Part 1, 24-30, 2006.

14. Liebe, H. J., "MPM --- an atmospheric millimetre-wave propagation model," Int. J. Infrared Milli. Waves, Vol. 10, 631-650, 1989.

15. Gaponov-Grekhov, A. V. and V. L. Granatstein, Application of High Power Microwaves, Artech House Publication, London, 1994.

16. Fliflet, A. W., et al., "Sintering of ceramic compacts in a 35 GHz gyrotron-powered furnace," Proc. IEEE Int. Conf. on Plasma Science, 159-160, San Diago, USA, 1997.

17. Fliflet, A. W., et al., "Pulsed 35 GHz gyrotron with overmoded applicator for sintering ceramic compacts," Proc. IEEE Int. Conf. on Plasma Science, 105-106, Boston, USA, 1996.

18. Barroso, J. J., A. Montes, G. O. Ludwig, and R. A. Correa, "Design of a 35 GHz gyrotron," Int. J. Infrared Milli. Waves, Vol. 11, 251-274, 1990.

19. Edgcombe, C. J., Ed., Gyrotron Oscillators: Their Principles and Practice, Taylor & Francis, London, 1993.

20. Gantenbein, G., E. Borie, O. Dumbrajs, and M. Thumm, "Design of a high order volume mode cavity for a 1 MW/140 GHz gyrotron,", Vol. 78, 771-787, 1995.

21. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.

22. MAGIC User Manual: 2007 version of Magic 3D, ATK Mission Research, Washington.

23. Singh, U., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," Int. J. Infrared Milli. Waves, Vol. 31, 533-541, 2010.

24. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.

25. Lawson, W., "MIG scaling," IEEE Trans. Plasma Sci., Vol. 16, 290-295, 1988.

26. Hermannsfeldt, W. B., EGUN, Stanford University Report SLAC-226, Stanford Linear Accelerator Center, 1979.

27. Singh, U., N. Kumar, N. Kumar, S. Tandon, H. Khatun, L. P. Purohit, and A. K. Sinha, "Numerical simulation of magnetron injection gun for 1MW 120 GHz gyrotron," Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010.

28. Kumar, N., M. K. Alaria, U. Singh, A. Bera, T. P. Singh, and A. K. Sinha, "Design of beam tunnel for 42 GHz, 200kW gyrotron," Int. J. Infrared Milli. Waves, Vol. 31, 601-607, 2010.

29. Gantenbein, G., et al., "Experimental investigations and analysis of parasitic RF oscillations in high power gyrotorns," IEEE Trans. Plasma Sci., Vol. 38, 1168-1177, 2010.

30. Nguyen, K., B. Danly, B. Levush, and M. Blank, "Electron gun and collector design for 94-GHz gyro amplifiers," IEEE Trans. Plasma Sci., Vol. 26, 799-813, 1998.

31. Poonia, S., S. Tandon, U. Singh, and A. K. Sinha, "Design studies of collector for 42 GHz gyrotron," National Confrence on Microwave, Antennas, Propagation and Remote Sensing, Bhilwara, India, Dec. 19-21, 2008.

32. Thumm, M., "Development of output power window for high power long pulse gyrotrons and EC wave applications," Int. J. Infrared Milli. Waves, Vol. 19, 3-14, 1998.

33. Heidinger, R., G. Dammertz, A. Meier, and M. Thumm, "CVD diamond windows studied with low and high power millimeter waves," IEEE Trans. Plasma Sci., Vol. 30, 800-807, 2002.

34. CST-Microwave Studio, User Manual: 2006 Version, Darmstadt, Germany.

© Copyright 2010 EMW Publishing. All Rights Reserved