The presence of desired signal in the training data for sample covariance matrix calculation is known to lead to a substantial performance degradation, especially when the desired signal is the dominant signal in the training data. Together with the uncertainty in the look direction, most of the adaptive beamforming solutions are unable to approach the optimal performance. In this paper, we propose an evolutionary algorithm (EA) based robust adaptive beamforming that is able to achieve near optimal performance. The essence of the idea is to shape the array beam response such that it has maximum response in the desired signal's angular range and minimum response in the interferences' angular range. In addition, the approach introduces null-response constraints deduced from the array observation to achieve better interference cancelation performance. As a whole, the proposed optimization is solvable using an improved variant of the differential evolution (DE) algorithm. Numerical simulations are also presented to demonstrate the efficacy of the proposed algorithm.
2. Gu, Y.-J., Z.-G. Shi, K. S. Chen, and Y. Li, "Robust adaptive beamforming for a class of Gaussian steering vector mismatch," Progress In Electromagnetics Research, Vol. 81, 315-328, 2008.
doi:10.2528/PIER08010202
3. Li, Y., Y.-J. Gu, Z.-G. Shi, and K. S. Chen, "Robust adaptive beamforming based on particle filter with noise unknown," Progress In Electromagnetics Research, Vol. 90, 151-169, 2009.
doi:10.2528/PIER09010302
4. Cox, H., "Resolving power and sensitivity to mismatch of optimum array processors," Journal of the Acoustical Society of America, Vol. 54, No. 3, 771-785, 1973.
doi:10.1121/1.1913659
5. Takao, K., M. Fujita, and T. Nishi, "An adaptive antenna array under directional constraint," IEEE Transactions Antennas and Propagation, Vol. 24, No. 5, 662-669, 1976.
doi:10.1109/TAP.1976.1141411
6. Er, M. H. and A. Cantoni, "Derivative constraints for broad-band element space antenna array processors," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 31, No. 6, 1378-1393, 1983.
doi:10.1109/TASSP.1983.1164219
7. Krolik, J. L., "The performance of matched-field beamformers with Mediterranean vertical array data," IEEE Transactions on Signal Processing, Vol. 44, No. 10, 2605-2611, 1996.
doi:10.1109/78.539043
8. Jablon, N., "Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 8, 996-1012, 1986.
doi:10.1109/TAP.1986.1143936
9. Vorobyov, S. A., A. B. Gershman, and Z.-Q. Luo, "Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem," IEEE Transactions on Signal Process, Vol. 51, No. 2, 313-324, 2003.
doi:10.1109/TSP.2002.806865
10. Shahbazpanahi, S., A. B. Gershman, Z.-Q. Luo, and K. M. Wong, "Robust adaptive beamforming for general-rank signal models using worst-case performance optimization," Proceedings SAM Workshop, 13-17, 2002.
11. Lorenz, R. G. and S. P. Boyd, "Robust minimum variance beamforming," IEEE Transactions on Signal Processing, Vol. 53, No. 5, 1684-1696, 2005.
doi:10.1109/TSP.2005.845436
12. Li, J., P. Stoica, and Z. Wang, "On robust capon beamforming and diagonal loading," IEEE Transactions on Signal Processing, Vol. 51, No. 7, 1702-1715, 2003.
doi:10.1109/TSP.2003.812831
13. Li, J., P. Stoica, and Z. Wang, "Doubly constrained robust capon beamformer," IEEE Transactions on Signal Processing, Vol. 52, No. 9, 2407-2423, 2004.
doi:10.1109/TSP.2004.831998
14. Du, L., J. Li, and P. Stoica, "Fully automatic computation of diagonal loading levels for robust adaptive beamforming," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 449-458, Jan. 2010.
doi:10.1109/TAES.2010.5417174
15. Selén, Y., , R. Abrahamsson, and P. Stoica, "Automatic robust adaptive beamforming via ridge regression," Signal Processing, Vol. 88, No. 1, 33-49, 2008.
doi:10.1016/j.sigpro.2007.07.003
16. De Veronese, L. P. and R. A. Krohling, "Differential evolution algorithm on the GPU with C-CUDA," IEEE Congress on Evolutionary Computation (CEC), 1-7, Barcelona, Spain, Jul. 2010.
17. De Donno, D., A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 116-122, Jun. 2010.
doi:10.1109/MAP.2010.5586593
18. Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn, and T. J. Purcell, "A survey of general-purpose computation on graphics hardware," Computer Graphics Forum, Vol. 26, No. 1, 80-113, Mar. 2007.
doi:10.1111/j.1467-8659.2007.01012.x
19. Storn, R. and K. Price, "Differential evolution --- A simple and efficient adaptive scheme for global optimization over continuous spaces," ICSI Technical Report TR-95-012, Vol. 11, http://http.icsi.berkeley.edu/storn/litera.html, 1995.
20. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328
21. Storn, R., K. V. Price, and J. Lampinen, , Differential Evolution --- A Practical Approach to Global Optimization, Berlin, 2005.
22. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306
23. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302
24. Goudos, S. K., Z. D. Zaharis, and T. Yioultsis, "Application of a differential evolution algorithm with strategy adaptation to the design of multi-band microwave filters for wireless communications," Progress In Electromagnetics Research, Vol. 109, 123-137, 2010.
doi:10.2528/PIER10081704
25. Das, S. and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE Trans. on Evolutionary Computation, Feb. 2011, DOI: 10.1109/TEVC.2010.2059031.
26. Huang, V. L., A. K. Qin, and P. N. Suganthan, "Self-adaptive differential evolution algorithm for constrained real-parameter optimization," IEEE Congress on Evolutionary Computation CEC 2006, 17-24, 2006.
27. Zhang, J. and A. C. Sanderson, "Jade adaptive differential evolution with optional external archive," IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, 945-958, 2009.
doi:10.1109/TEVC.2009.2014613
28. Qin, A. K., V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with strategy adaptation for global numerical optimization," IEEE Transactions on Evolutionary Computation, Vol. 13, 398-417, Apr. 2009.
doi:10.1109/TEVC.2008.927706
29. Takahama, T. and S. Sakai, "Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites," Proc. IEEE Congress on Evolutionary Computation, 1-8, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 2006.
30. Mallipeddi, R. and P. N. Suganthan, "Ensemble of constraint handling techniques," IEEE Trans. on Evolutionary Computation, Vol. 14, No. 4, 561-579, Aug. 2010.
doi:10.1109/TEVC.2009.2033582
31. Mallipeddi, R., P. N. Suganthan, Q. K. Pan and M. F. Tasgetiren, "Differential evolution algorithm with ensemble of parameters and mutation strategies," Applied Soft Computing, Vol. 11, No. 2, 1679-1696, 2010.
doi:10.1016/j.asoc.2010.04.024
33. Lie, J. P., X. Li, W. Ser, C. M. S. See, and L. Lei, "Adaptive uncertainty based iterative robust capon beamformer," Proc. IEEE Int Acoustics Speech and Signal Processing (ICASSP) Conf., 2526-2529, 2010.