Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 1-18


By B. Mhamdi, K. Grayaa, and T. Aguili

Full Article PDF (234 KB)

Recently, the use of the particle swarm optimization (PSO) technique for the reconstruction of microwave images has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, the basic PSO algorithm is easily trapping into local minimum and may lead to the premature convergence. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from this local optima becomes difficult. To overcome the premature convergence of PSO, we propose a new hybrid algorithm of particle swarm optimization (PSO), simulated annealing (SA) and tabu search algorithm (TS) for solving the scattering inverse problem. The incorporation of tabu search (TS) and simulated annealing (SA) as local improvement approaches enable the hybrid algorithm to overleap local optima and intensify its search ability in local regions. Reconstructions of dielectric scatterers from experimental inverse-scattering data are finally presented to demonstrate the accuracy and efficiency of the hybrid technique.

B. Mhamdi, K. Grayaa, and T. Aguili, "Hybrid of Particle Swarm Optimization, Simulated Annealing and Tabu Search for the Reconstruction of Two-Dimensional Targets from Laboratory-Controlled Data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.

2. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.

3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.

4. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation --- overview and recent advances," IEEE Instrum. and Meas. Mag., Vol. 10, 26-38, Apr. 2007.

5. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.

6. Benedetti, M., M. Donelli, G. Franceschini, M. Pastorino, and A. Massa, "Effective exploitation of the a-priori information through a microwave imaging procedure based on the SMWfor NDE/NDT applications," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, 2584-2592, Nov. 2005.

7. Zhang, Z. Q. and Q. H. Liu, "Applications of the BiCGS-FFT method to 3-D induction well logging problems," IEEE Geosci. Remote Sensing, Vol. 41, 856-869, May 2003.

8. Catapano, I., L. Crocco, R. Persico, M. Pieraccini, and F. Soldovieri, "Linear and nonlinear microwave tomography approaches for subsurface prospecting: Validation on real data," IEEE Antennas Wireless Propag. Lett., Vol. 5, 49-53, Dec. 2006.

9. Crocco, L., M. D'Urso, and T. Isernia, "The contrast source-extended born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.

10. Hofmann, B. and O. Scherzer, "Factors influencing the illposedness of nonlinear problems," Inverse Problems, Vol. 10, 1277-1297, 1994.

11. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, 1337-1348, 1997.

12. Van Den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.

13. Hettlich, F., "Two methods for solving an inverse conductive scattering problem ," Inverse Problems, Vol. 10, 375-385, 1994.

14. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.

15. Liu, C.-L., C.-C. Chiu, T.-C. Tu, and M.-F. Tasi, "Electromagnetic transverse electric-wave inverse scattering of an imperfectly conducting cylinder by genetic algorithms," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 7, 1-15, Jun. 2008.

16. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure ," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.

17. Garnero, L., A. Franchois, J. P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave imaging-complex permittivity reconstruction-by simulated annealing," IEEE Trans. Microw. Theory Tech., Vol. 39, 1801-1807, 1991.

18. Brovko Alexander, V., K. Murphy Ethan, and V. Yakovlev Vadim, "Waveguide microwave imaging: Neural network reconstruction of functional 2-D permittivity profiles," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, Feb. 2009.

19. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, 771-779, Mar. 2004.

20. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.

21. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.

22. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three dimensional microwave imaging problems solved through an eĀ±cient multiscaling particle swarm optimization," IEEE Geoscience and Remote Sensing, Vol. 47, 1467-1481, 2009.

23. Emad Eldin, A. M., E. A. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.

24. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

25. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evolutionary Comp., Vol. 1, 67-82, 1997.

26. Fulginei, F. R. and A. Salvini, "Comparative analysis between modern heuristics and hybrid algorithms," COMPEL: Int. Journal for Comp. and Mathematics in Electrical and Electronic Engineering , Vol. 26, 259-268, 2007.

27. Harrignton, R. F., Field Computation by Moments Methods, IEEE Press, Piscataway, NJ, 1993.

28. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, IEEE Service Center, Piscataway, 1995.

29. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Journal of Science, Vol. 220, 671-680, 1983.

30. Glover, F., "Tabu search: Part 1," ORSA Journal on Computing, Vol. 1, No. 3, 190-206, 1989.

31. Pan, H. and X. Han, "BP network learning algorithm research and application of PSO algorithm," Computer Engineering and Application, Vol. 44, No. 9, 67-69, 2008.

32. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, 117-130, 2005.

33. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, 556-567, 2007.

34. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 771-778, 2004.

35. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging ," IEEE Trans. on Microwave Theory Tech., Vol. 51, 1162-1173, 2003.

36. Sudhakaran, M. and P. Ajay-D-Vimal Raj, "Integrating genetic algorithms and tabu search for unit commitment problem," International Journal of Engineering, Science and Technology, Vol. 2, 57-69, 2010.

© Copyright 2010 EMW Publishing. All Rights Reserved