PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 163-182

ROOM TEMPERATURE TERAHERTZ PHOTODETECTION IN ATOMIC AND QUANTUM WELL REALIZED STRUCTURES

By M. Zyaei, A. Rostami, H. Haji Khanmohamadi, and H. Rasooli Saghai

Full Article PDF (406 KB)

Abstract:
A novel kind of room temperature terahertz photodetector based on Electromagnetically Induced Transparency (EIT) is presented. The main idea for room temperature and THz range operation is reduction of dark current which is done by converting of the incoming terahertz signal (long-wavelength Infrared signal) to short-wavelength field through EIT phenomena. For realization of this idea, we examine EIT phenomena in multi levels atomic system and quantum wells cascade structures. In the proposed structure the quantum interference between long wavelength and short-wavelength radiation modifies the absorption characteristic of short-wavelength probe field. By this means, the terahertz signal does not interact directly with ground state electrons, but affects on the absorption characteristics of the short-wavelength or visible probe optical field which directly interact with ground state electrons. Therefore, the important thermionic dark current in terahertz detection, can be strongly reduced. So, the proposed idea is appropriate for terahertz and room temperature applications.

Citation:
M. Zyaei, A. Rostami, H. Haji Khanmohamadi, and H. Rasooli Saghai, "Room Temperature Terahertz Photodetection in Atomic and Quantum Well Realized Structures," Progress In Electromagnetics Research B, Vol. 28, 163-182, 2011.
doi:10.2528/PIERB10121502

References:
1. Diakides, N. A. and J. D. Bronzino, Medical Infrared Imaging, CRC Press, 2008.

2. Ganichev, S. D. and W. Prettl, Intense Terahertz Excitation of Semiconductors, Oxford University Press, 2006.

3. Miles, R. E., X. C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Material and Object, Springer, 2006.

4. Schneider, H. and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, 2006.

5. Paiella, R., Intersubband Transitions in Quantum Structures, McGraw-Hill, 2006.

6. Levine, B. F., "Quantum well infrared photodetectors," Appl. Phys., Vol. 74, R1-R81, 1993.

7. Etteh, N. E. I. and P. Harrison, "Carrier scattering approach to the origins of dark current in mid and far-infrared (terahertz) quantum-well intersubband photodetectors (QWLPs)," IEEE J. Quantum Electron., Vol. 37, 672-675, 2001.
doi:10.1109/3.918580

8. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

9. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997.

10. Zyaei, M., H. Rasooli Saghai, K. Abbasian, and A. Rostami, "Long wavelength infrared photodetector design based on electromagnetically induced transparency," Optics Comm., Vol. 281, 3739-3747, 2008.
doi:10.1016/j.optcom.2008.03.036

11. Rostami, A., M. Zyaei, H. Rasooli Saghai, and F. J. Sharifi, "Terahertz asymmetric quantum well infrared photodetector design based on electromagnetically induced transparency," SPIE, Vol. 7266, 72660Z-1, 2008.

12. Sandhya, N. and K. K. Sharma, "Atomic coherence effects in four-level systems: Doppler-free absorption within an electromagnetically-induced-transparency window," Phys. Rev. A, Vol. 55, 2155-2158, 1997.
doi:10.1103/PhysRevA.55.2155

13. Banacloche, J. G., Y. Q. Li, S. Z. Jin, and M. Xiao, "Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment ," Phys. Rev. A, Vol. 51, 576-584, 1995.
doi:10.1103/PhysRevA.51.576

14. Phillips, C. C., E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, "Observation of electromagnetically induced transparency and measurements of subband dynamics in a semiconductor quantum well," Physica E, Vol. 7, 166-173, 2000.
doi:10.1016/S1386-9477(99)00290-8

15. Dynes, J. F., M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, "Optically mediated coherent population trapping in asymmetric semiconductor quantum wells," Phys. Rev. B, Vol. 72, 085323-085329, 2005.
doi:10.1103/PhysRevB.72.085323

16. Wu, J. H., J. Y. Gao, J. H. Xu, L. silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, "Ultrafast all optical switching via tunable fano interference," Phys. Rev. Lett., Vol. 95, 057401-057406, 2005.
doi:10.1103/PhysRevLett.95.057401

17. Schmidt, H. and A. Imamoglu, "Nonlinear optical devices based on a transparency in semiconductor intersubband transitions," Opt. Comm., Vol. 131, 333-338, 1996.
doi:10.1016/0030-4018(96)00354-9

18. Faist, J., F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, "Controlling the sign of quantum interference by tunneling from quantum wells," Nature, Vol. 390, 589-591, 1997.
doi:10.1038/37562

19. Sun, H., S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, "Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference ," Phys. Rev. B, Vol. 74, 155314-155318, 2006.
doi:10.1103/PhysRevB.74.155314

20. Li, J.-H., "Controllable optical bistability in a four-subband semiconductor quantum well system," Phys. Rev B, Vol. 75, 155329-155334, 2007.
doi:10.1103/PhysRevB.75.155329


© Copyright 2010 EMW Publishing. All Rights Reserved